v2/flex-wordcount-python/wordcount.py (125 lines of code) (raw):

# # Copyright (C) 2019 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # """A word-counting workflow using Flex Templates.""" from __future__ import absolute_import import argparse import json import logging import re import apache_beam as beam from apache_beam.io import ReadFromText from apache_beam.io import WriteToText from apache_beam.io.avroio import WriteToAvro from apache_beam.io.parquetio import WriteToParquet from apache_beam.metrics import Metrics from apache_beam.metrics.metric import MetricsFilter from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.options.pipeline_options import SetupOptions import avro.schema from past.builtins import unicode import pyarrow FORMATS = {'text', 'parquet', 'avro'} HEADER = ['word', 'count'] AVRO_SCHEMA = { 'namespace': 'avro.wordcount', 'type': 'record', 'name': 'WordCount', 'fields': [{ 'name': 'word', 'type': 'string' }, { 'name': 'count', 'type': 'int' }] } PARQUET_SCHEMA = pyarrow.schema([('word', pyarrow.string()), ('count', pyarrow.int64())]) DEFAULT_CODEC = 'snappy' class WordExtractingDoFn(beam.DoFn): """Parse each line of input text into words.""" def __init__(self): self.words_counter = Metrics.counter(self.__class__, 'words') self.word_lengths_counter = Metrics.counter(self.__class__, 'word_lengths') self.word_lengths_dist = Metrics.distribution(self.__class__, 'word_len_dist') self.empty_line_counter = Metrics.counter(self.__class__, 'empty_lines') def process(self, element): """Returns an iterator over the words of this element. The element is a line of text. If the line is blank, note that, too. Args: element: the element being processed Returns: The processed element. """ text_line = element.strip() if not text_line: self.empty_line_counter.inc(1) words = re.findall(r'[\w\']+', text_line, re.UNICODE) for w in words: self.words_counter.inc() self.word_lengths_counter.inc(len(w)) self.word_lengths_dist.update(len(w)) return words def run(argv=None): """Main entry point; defines and runs the wordcount pipeline.""" parser = argparse.ArgumentParser() parser.add_argument( '--input', dest='input', default='gs://dataflow-samples/shakespeare/kinglear.txt', help='Input file to process.') parser.add_argument( '--output', dest='output', required=True, help='Output file to write results to.') parser.add_argument( '--format', dest='format', default='text', help='Supported output file formats: %s.' % FORMATS) known_args, pipeline_args = parser.parse_known_args(argv) if known_args.format not in FORMATS: raise ValueError('--format should be one of: %s' % FORMATS) # We use the save_main_session option because one or more DoFn's in this # workflow rely on global context (e.g., a module imported at module level). pipeline_options = PipelineOptions(pipeline_args) pipeline_options.view_as(SetupOptions).save_main_session = True p = beam.Pipeline(options=pipeline_options) # Read the text file[pattern] into a PCollection. lines = p | 'read' >> ReadFromText(known_args.input) # Count the occurrences of each word. def count_ones(word_ones): (word, ones) = word_ones return (word, sum(ones)) counts = ( lines | 'split' >> (beam.ParDo(WordExtractingDoFn()).with_output_types(unicode)) | 'pair_with_one' >> beam.Map(lambda x: (x, 1)) | 'group' >> beam.GroupByKey() | 'count' >> beam.Map(count_ones)) # Format the counts into a PCollection of strings. def format_text(word_count): (word, count) = word_count return '%s: %d' % (word, count) # Format the counts into a PCollection of dictionary strings. def format_dict(word_count): (word, count) = word_count row = dict(zip(HEADER, [word, count])) return row if known_args.format == 'text': output = counts | 'format text' >> beam.Map(format_text) # Write the output using a "Write" transform that has side effects. # pylint: disable=expression-not-assigned output | 'write text' >> WriteToText(known_args.output) elif known_args.format == 'avro': output = counts | 'format avro' >> beam.Map(format_dict) schema = avro.schema.parse(json.dumps(AVRO_SCHEMA)) # Write the output using a "Write" transform that has side effects. # pylint: disable=expression-not-assigned output | 'write avro' >> WriteToAvro( file_path_prefix=known_args.output, schema=schema, codec=DEFAULT_CODEC) else: output = counts | 'format parquet' >> beam.Map(format_dict) # Write the output using a "Write" transform that has side effects. # pylint: disable=expression-not-assigned output | 'write parquet' >> WriteToParquet( file_path_prefix=known_args.output, schema=PARQUET_SCHEMA, codec=DEFAULT_CODEC) result = p.run() result.wait_until_finish() # Do not query metrics when creating a template which doesn't run if (not hasattr(result, 'has_job') # direct runner or result.has_job): # not just a template creation empty_lines_filter = MetricsFilter().with_name('empty_lines') query_result = result.metrics().query(empty_lines_filter) if query_result['counters']: empty_lines_counter = query_result['counters'][0] logging.info('number of empty lines: %d', empty_lines_counter.result) word_lengths_filter = MetricsFilter().with_name('word_len_dist') query_result = result.metrics().query(word_lengths_filter) if query_result['distributions']: word_lengths_dist = query_result['distributions'][0] logging.info('average word length: %d', word_lengths_dist.result.mean) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) run()