in agents/EmbedderAgent.py [0:0]
def create(self, question):
"""Text embedding with a Large Language Model."""
if self.mode == 'vertex':
if isinstance(question, str):
embeddings = self.model.get_embeddings([question])
for embedding in embeddings:
vector = embedding.values
return vector
elif isinstance(question, list):
vector = list()
for q in question:
embeddings = self.model.get_embeddings([q])
for embedding in embeddings:
vector.append(embedding.values)
return vector
else: raise ValueError('Input must be either str or list')
elif self.mode == 'lang-vertex':
vector = self.embeddings_service.embed_documents(question)
return vector