in embeddings/retrieve_embeddings.py [0:0]
def get_embedding_chunked(textinput, batch_size):
for i in range(0, len(textinput), batch_size):
request = [x["content"] for x in textinput[i : i + batch_size]]
response = embedder.create(request) # Vertex Textmodel Embedder
# Store the retrieved vector embeddings for each chunk back.
for x, e in zip(textinput[i : i + batch_size], response):
x["embedding"] = e
# Store the generated embeddings in a pandas dataframe.
out_df = pd.DataFrame(textinput)
return out_df