use-cases/model-fine-tuning-pipeline/data-preparation/gemma-it/manifests/job.yaml (46 lines of code) (raw):

apiVersion: batch/v1 kind: Job metadata: name: data-prep spec: backoffLimit: 0 template: metadata: labels: app: data-prep ml-platform: data-prep spec: containers: - name: job image: V_IMAGE_URL imagePullPolicy: Always env: - name: "BUCKET" value: "V_DATA_BUCKET" - name: "DATASET_INPUT_PATH" value: "V_DATASET_INPUT_PATH" - name: "DATASET_INPUT_FILE" value: "V_DATASET_INPUT_FILE" - name: "DATASET_OUTPUT_PATH" value: "V_DATASET_OUTPUT_PATH" - name: "PROJECT_ID" value: "V_PROJECT_ID" - name: "PROMPT_MODEL_ID" value: "V_PROMPT_MODEL_ID" - name: "REGION" value: "V_REGION" resources: requests: cpu: 100m memory: 512Mi limits: cpu: 250m memory: 1Gi nodeSelector: resource-type: "cpu" restartPolicy: Never serviceAccountName: V_KSA tolerations: - key: "on-demand" operator: "Exists" effect: "NoSchedule"