sample_workloads/lit-gpt-demo/utilities/monitor_collectives.py (298 lines of code) (raw):

"""A utility to trace torch.distributed calls. Traces torch.distributed collectives before dispatch. In particular, logs the collective kind (all_reduce, all_to_all, ..), message size (10 MB), and which GPU devices are participating ([0, 1, 6, 7]). These are logged as NVTX markers by NVIDIA Nsight, as well as printed to stdout. By default, we only log cross-node collective communications. To assist with computing the effective bandwidth of a collective, a nominal expression is provided in the doc string of each 'traced_<collective>'. This also requires extracting the timings of the corresponding NCCL kernels. Typical usage example: import utilities.monitor_collectives utilities.monitor_collectives.shunt_torch_communication() When running a workload, also define TORCH_DISTRIBUTED_TRACING to be one of 'ALL' or 'CROSSNODE'. See `should_rank_record_comm` for added details. """ import functools import inspect import io import json import os import pickle import sys from datetime import datetime import calendar import uuid import nvtx import torch.cuda import torch.distributed _TRACE_MODE = None # Note: By default, we only target tracing *cross-node* communications. # See 'should_rank_record_comm' def shunt_torch_communication(): _identify_trace_mode() if _TRACE_MODE == 'none': if int(os.environ.get("RANK", "0")) == 0: print('Tracing torch.distributed collectives disabled.', flush=True) return _shunt_torch_communication_objects() _shunt_torch_communication_calls() if int(os.environ.get("RANK", "0")) == 0: print('NVTX and print tracing of torch.distributed collectives enabled.', flush=True) print(f"{_GPU_SERIAL=}, {_VM_ID=}") if not _SHOULD_PRINT: print('Collectives are traced but will not be printed to stdout', flush=True) def _identify_trace_mode(): global _TRACE_MODE _TRACE_MODE = os.environ.get('TORCH_DISTRIBUTED_TRACING', 'CROSSNODE') _TRACE_MODE = _TRACE_MODE.lower() global _SHOULD_PRINT _SHOULD_PRINT = os.environ.get('TORCH_DISTRIBUTED_TRACING_PRINT', 'False') _SHOULD_PRINT = _SHOULD_PRINT.lower() in ['true', '1', 't', 'y', 'yes'] global _GPU_SERIAL _GPU_SERIAL = os.environ.get("GPU_SERIAL", "unknown") global _VM_ID _VM_ID = os.environ.get("VM_ID", "unknown") # Each wrapper should match format 'traced_<collective>' def _shunt_torch_communication_calls(): """Replaces torch.distributed.<target_collective> with a traced version. """ target_collectives = [ 'barrier', 'broadcast_object_list', 'broadcast', 'gather', 'scatter', 'reduce', 'reduce_scatter', 'reduce_scatter_tensor', 'all_reduce', 'all_gather', 'all_gather_into_tensor', 'all_to_all', 'all_to_all_single', 'batch_isend_irecv', 'isend', 'irecv', 'send', 'recv', ] this_module = sys.modules[__name__] for collective in target_collectives: original_fn = getattr(torch.distributed, collective) replaced_fn = getattr(this_module, 'traced_' + collective) setattr(torch.distributed, 'untraced_' + collective, original_fn) setattr(torch.distributed, collective, replaced_fn) def _shunt_torch_communication_objects(): original_p2p = torch.distributed.P2POp setattr(torch.distributed, 'UntracedP2POp', original_p2p) setattr(torch.distributed, 'P2POp', _TracedP2POp) # Each 'traced_<comm>' defines a 'message_size' to compute B/W. # Ref https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_barrier(group=None, async_op=False, device_ids=None): """Intercepts invocations of torch.distributed.barrier. """ if _should_rank_record_comm(group): _emit_call_description('barrier', message_size=1, group=group) return torch.distributed.untraced_barrier(group, async_op, device_ids) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_broadcast_object_list(object_list, src=0, group=None, device=None): """Intercepts invocations of torch.distributed.broadcast_object_list. Converts objects to tensor data using the pickle library. Then conducts a torch.distributed.broadcast call. """ if _should_rank_record_comm(group, root_rank=src): message_size = 0 for obj in object_list: # Note: This computation is sadly redundant with underlying call :( # For now we don't expect this invocation to be in critical path. buf = io.BytesIO() pickle.Pickler(buf).dump(obj) message_size += buf.getbuffer().nbytes _emit_call_description( 'broadcast_object_list', message_size, group, root_rank=src) return torch.distributed.untraced_broadcast_object_list( object_list, src, group, device) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_broadcast(tensor, src, group=None, async_op=False): """Intercepts invocations of torch.distributed.broadcast. Calculate [Ring-B/W] = [Message Size]/[Kernel Time] for large [Message Size] https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf """ if _should_rank_record_comm(group, root_rank=src): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('broadcast', message_size, group, root_rank=src) return torch.distributed.untraced_broadcast( tensor, src, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_gather( tensor, gather_list=None, dst=0, group=None, async_op=False): """Intercepts invocations of torch.distributed.gather. Let T := sum([Receive Kernel Time from Rank i] for i != dst) Calculate [P2P-B/W] = [Message Size]/T Each of (n-1) ranks sends a message to the root. Note that any correction factors for the bus bandwidth (e.g. [n-1]/n) depend on the *definition* of 'Message Size'. In some cases, such as for 'gather', we define 'Message Size' so as to omit the size of data that is already local to the destination GPU for the 'gather' operation. In this case, no correction factor is needed. In NCCL tests, they assume all ranks send equal sized messages and include this size of data already resident on the destination GPU. Thus, in there case you see a (n-1)/n correction factor on calculating the bus bandwidth. In general, the goal of computing the bus bandwidth is to compare data transfer rates on the bus relative to peak bus bandwidth. See https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md. https://github.com/NVIDIA/nccl-tests/blob/1a5f551ffd6e/src/gather.cu#L54 https://github.com/pytorch/pytorch/blob/bfd995f0d6bf/torch/csrc/cuda/nccl.cpp#L1040 """ if _should_rank_record_comm(group, root_rank=dst, is_ring=False): message_size = functools.reduce( lambda sz, x: sz + x.nelement() * x.element_size(), gather_list, 0) message_size -= tensor.nelement() * tensor.element_size() _emit_call_description('gather', message_size, group, root_rank=dst) return torch.distributed.untraced_gather( tensor, gather_list, dst, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_scatter( tensor, scatter_list=None, src=0, group=None, async_op=False): """Intercepts invocations of torch.distributed.scatter. Let T := sum([Send Kernel Time from Rank i] for i != src) Calculate [P2P-B/W] = [Message Size]/T Each of (n-1) ranks receives a message from the root. There is no (n-1)/n factor as we factor it in [Message Size]. https://github.com/NVIDIA/nccl-tests/blob/1a5f551ffd6e/src/scatter.cu#L50 https://github.com/pytorch/pytorch/blob/bfd995f0d6bf/torch/csrc/cuda/nccl.cpp#L1089 """ if _should_rank_record_comm(group, root_rank=src, is_ring=False): message_size = functools.reduce( lambda sz, x: sz + x.nelement() * x.element_size(), scatter_list, 0) message_size -= tensor.nelement() * tensor.element_size() _emit_call_description('scatter', message_size, group, root_rank=src) return torch.distributed.untraced_scatter( tensor, scatter_list, src, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_reduce( tensor, dst, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.reduce. Calculate [Ring-B/W] = [Message Size]/[Kernel Time] for large [Message Size] Also see 'traced_broadcast' """ if _should_rank_record_comm(group, root_rank=dst): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('reduce', message_size, group, root_rank=dst) return torch.distributed.untraced_reduce(tensor, dst, op, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_reduce_scatter( output, input_list, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.reduce_scatter. Let n := [Group Size]. Calculate [Ring-B/W] = (n-1)/n * [Message Size]/[Kernel Time] Assumes equal tensor sizes. It's the same as first half of ring All-Reduce. """ if _should_rank_record_comm(group): message_size = output.nelement() * output.element_size() _emit_call_description('reduce_scatter', message_size, group) return torch.distributed.untraced_reduce_scatter( output, input_list, op, group, async_op) # pylint: disable=redefined-builtin,g-doc-args,g-doc-return-or-yield def traced_reduce_scatter_tensor( output, input, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.reduce_scatter_tensor. Similar to 'traced_reduce_scatter' """ if _should_rank_record_comm(group): message_size = output.nelement() * output.element_size() _emit_call_description('reduce_scatter', message_size, group) return torch.distributed.untraced_reduce_scatter_tensor( output, input, op, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_all_reduce( tensor, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_reduce. Let n := [Group Size] Calculate [Ring-B/W] = 2(n-1)/n * [Message Size] / [Kernel Time] https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf """ if _should_rank_record_comm(group): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('all_reduce', message_size, group) return torch.distributed.untraced_all_reduce( tensor, op, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_all_gather(tensor_list, tensor, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_gather. Let n := [Group Size] Calculate [Ring-B/W] = (n-1)/n * [Message Size] / [Kernel Time] Assuming equal tensor sizes. """ if _should_rank_record_comm(group): message_size = functools.reduce( lambda size, x: size + x.nelement() * x.element_size(), tensor_list, 0) _emit_call_description('all_gather', message_size, group) return torch.distributed.untraced_all_gather( tensor_list, tensor, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_all_gather_into_tensor( output_tensor, input_tensor, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_gather_into_tensor. Similar 'traced_all_gather' """ if _should_rank_record_comm(group): message_size = output_tensor.nelement() * output_tensor.element_size() _emit_call_description('all_gather', message_size, group) return torch.distributed.untraced_all_gather_into_tensor( output_tensor, input_tensor, group, async_op) # Note: The TCP Direct team intends to implement a custom version of AllToAll. # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_all_to_all( output_tensor_list, input_tensor_list, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_to_all. Let S := sum([Message Size on Rank i] for i = 1..n) where n := [Group Size] Let T := [End of last Receive last rank] - [Start of first Send first rank] Calculate [Algo B/W] = S / T. There is no n/(n-1) correction factor as we factor it in [Message Size]. https://github.com/NVIDIA/nccl-tests/blob/1a5f551ffd6e/src/alltoall.cu#L57 https://github.com/pytorch/pytorch/blob/bfd995f0d6bf/torch/csrc/cuda/nccl.cpp#L911 """ if _should_rank_record_comm(group): message_size = functools.reduce( lambda s, x: s + x.nelement() * x.element_size(), input_tensor_list, 0) # Omit bytes corresponding to send and receive on the same rank self_tensor = input_tensor_list[torch.distributed.get_rank(group)] message_size -= self_tensor.nelement() * self_tensor.element_size() _emit_call_description('all_to_all', message_size, group) return torch.distributed.untraced_all_to_all( output_tensor_list, input_tensor_list, group, async_op) # pylint: disable=g-doc-args,g-doc-return-or-yield,redefined-builtin def traced_all_to_all_single( output, input, output_split_sizes=None, input_split_sizes=None, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_to_all_single. Similar to 'traced_all_to_all' """ if _should_rank_record_comm(group): self_rank = torch.distributed.get_rank(group) if input_split_sizes is not None: self_slice = input_split_sizes[self_rank] else: self_slice = input.size(dim=0) / torch.distributed.get_world_size(group) slice_nelement = input.nelement() / input.size(dim=0) message_size = input.nelement() * input.element_size() message_size -= self_slice * slice_nelement * input.element_size() _emit_call_description('all_to_all_single', message_size, group) return torch.distributed.untraced_all_to_all_single( output, input, output_split_sizes, input_split_sizes, group, async_op) # Note: Each send and receive occurs on indepenent CUDA streams # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_batch_isend_irecv(p2p_op_list): """Intercepts invocations of torch.distributed.batch_isend_irecv. Calculate [P2P-B/W] = [Message Size]/[Kernel Time] for each send and recv. """ correlation_id = str(uuid.uuid4()) for p2p in p2p_op_list: if _SHOULD_PRINT: print(f"Num p2p ops in batch: {len(p2p_op_list)}") if _should_rank_record_comm(p2p.group, peer_rank=p2p.peer, is_ring=False): api = 'send' if p2p.op == torch.distributed.untraced_isend else 'recv' message_size = p2p.tensor.nelement() * p2p.tensor.element_size() _emit_call_description(api, message_size, group=p2p.group, peer_rank=p2p.peer, correlation_id=correlation_id) return torch.distributed.untraced_batch_isend_irecv(p2p_op_list) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_isend(tensor, dst, group=None, tag=0): """Intercepts invocations of torch.distributed.isend. Calculate [P2P-B/W] = [Message Size]/[Kernel Time] """ if _should_rank_record_comm(group, peer_rank=dst, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('send', message_size, group, dst) return torch.distributed.untraced_isend(tensor, dst, group, tag) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_irecv(tensor, src=None, group=None, tag=0): """Intercepts invocations of torch.distributed.irecv. """ if _should_rank_record_comm(group, peer_rank=src, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('recv', message_size, group, src) return torch.distributed.untraced_irecv(tensor, src, group, tag) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_send(tensor, dst, group=None, tag=0): """Intercepts invocations of torch.distributed.send. """ if _should_rank_record_comm(group, peer_rank=dst, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('send', message_size, group, dst) return torch.distributed.untraced_send(tensor, dst, group, tag) # pylint: disable=g-doc-args,g-doc-return-or-yield def traced_recv(tensor, src=None, group=None, tag=0): """Intercepts invocations of torch.distributed.recv. """ if _should_rank_record_comm(group, peer_rank=src, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('recv', message_size, group, src) return torch.distributed.untraced_recv(tensor, src, group, tag) @functools.lru_cache(maxsize=None) def _should_rank_record_comm( group=None, peer_rank=None, root_rank=None, is_ring=True): """Decides whether a given torch.distributed collective should be recorded. Args: group: The torch process group (i.e. participating GPUs) in this collective. peer_rank: In direct peer to peer operations, the global rank of the peer. root_rank: The global rank of the root GPU, for collectives with a root. as_ring: Whether the default NCCL implementation uses a ring algorithm. Specifying 'peer_rank' and 'is_ring=True' are incompatible. Returns: Whether to record a descriptive NVTX marker, and possibly print a log trace. """ if not _is_current_process_in_group(group): return False if _TRACE_MODE == 'crossnode' and not _is_crossnode_comm(group, peer_rank): return False if not is_ring and root_rank is not None: return torch.distributed.get_rank() == root_rank return True def _is_current_process_in_group(group=None): return torch.distributed.get_rank(group) >= 0 @functools.lru_cache(maxsize=None) def _is_crossnode_comm(group=None, peer_rank=None): """Whether this collective involves communication across nodes. Args: group: The torch process group (i.e. participating GPUs) in this collective. peer: In direct peer to peer operations, the global rank of the peer. Returns: Whether this collective involves communications across nodes. """ count_per_node = torch.cuda.device_count() if peer_rank is not None: this_node = int(torch.distributed.get_rank() / count_per_node) peer_node = int(peer_rank / count_per_node) return this_node != peer_node else: if group is not None: ranks = torch.distributed.get_process_group_ranks(group=group) else: ranks = [*range(torch.distributed.get_world_size())] nodes = list(map(lambda rank: int(rank / count_per_node), ranks)) return any([node != nodes[0] for node in nodes]) def _emit_call_description( name, message_size, group=None, peer_rank=None, root_rank=None, correlation_id=None): call_description = _TorchDistributedCallDescriptor( name, message_size, group, peer_rank, root_rank, correlation_id).to_json() nvtx.mark(call_description) if _should_rank_print(group, peer_rank, root_rank): print(call_description) class _TorchDistributedCallDescriptor: """Description of a torch.distributed comm call to be stored as NVTX marker. """ def __init__( self, name, message_size, group=None, peer_rank=None, root_rank=None, correlation_id=None): self.name = name self.rank = torch.distributed.get_rank() self.source_line = _get_call_source_line() self.message_size = message_size self.device = torch.cuda.current_device() self.timestamp = calendar.timegm(datetime.utcnow().utctimetuple()) self.gpu_serial = _GPU_SERIAL self.vm_id = _VM_ID if group is not None: self.group_ranks = torch.distributed.get_process_group_ranks(group=group) if peer_rank is not None: self.peer_rank = peer_rank if root_rank is not None: self.root_rank = root_rank if correlation_id is not None: self.correlation_id = correlation_id def to_json(self): return json.dumps(self, default=lambda o: o.__dict__) def _should_rank_print(group=None, peer_rank=None, root_rank=None): if not _SHOULD_PRINT: return False if root_rank is not None: leader = root_rank elif group is not None: leader = torch.distributed.get_global_rank(group, 0) else: leader = 0 return (peer_rank is not None) or torch.distributed.get_rank() == leader # A fixed depth works for all cases here def _get_call_source_line(depth=4): caller = inspect.getframeinfo(inspect.stack()[depth][0]) return '{}:{}'.format(caller.filename, caller.lineno) # We need to un-hide the original type for 'batch_isend_irecv' due to type # checks performed by torch.distributed. This is not an issue as by then we # have already recorded the call. class _TracedP2POp(torch.distributed.P2POp): """Used to redirect torch.distributed.i{send,recv} on 'batch_isend_irecv'. """ def __init__(self, op, tensor, peer, group=None, tag=0): original_op = _get_original_p2p_op(op) torch.distributed.UntracedP2POp.__init__( self, original_op, tensor, peer, group, tag) def __new__(cls, op, tensor, peer, group=None, tag=0): original_op = _get_original_p2p_op(op) return torch.distributed.UntracedP2POp.__new__( cls, original_op, tensor, peer, group, tag) def _get_original_p2p_op(op): if op == torch.distributed.isend: return torch.distributed.untraced_isend elif op == torch.distributed.irecv: return torch.distributed.untraced_irecv