sample_workloads/megatron-gke/docker/monitor_collectives.py (268 lines of code) (raw):

"""A utility to trace torch.distributed calls. Traces torch.distributed collectives before dispatch. In particular, logs the collective kind (all_reduce, all_to_all, ..), message size (10 MB), and which GPU devices are participating ([0, 1, 6, 7]). These are logged as NVTX markers by NVIDIA Nsight, as well as printed to stdout. By default, we only log cross-node collective communications. To assist with computing the effective bandwidth of a collective, a nominal expression is provided in the doc string of each 'traced_<collective>'. This also requires extracting the timings of the corresponding NCCL kernels. Typical usage example: import utilities.monitor_collectives utilities.monitor_collectives.shunt_torch_communication() When running a workload, also define TORCH_DISTRIBUTED_TRACING to be one of 'ALL' or 'CROSSNODE'. See `should_rank_record_comm` for added details. """ import functools import inspect import io import json import os import pickle import sys import nvtx import torch.cuda import torch.distributed _TRACE_MODE = os.environ.get('TORCH_DISTRIBUTED_TRACING', 'CROSSNODE').lower() # Note: By default, we only target tracing *cross-node* communications. # See 'should_rank_record_comm' def shunt_torch_communication(): if _TRACE_MODE == 'none': print('Tracing torch.distributed collectives disabled.', flush=True) return _shunt_torch_communication_objects() _shunt_torch_communication_calls() print('NVTX and print tracing of torch.distributed collectives enabled.', flush=True) # Each wrapper should match format 'traced_<collective>' def _shunt_torch_communication_calls(): """Replaces torch.distributed.<target_collective> with a traced version. """ target_collectives = [ 'barrier', 'broadcast_object_list', 'broadcast', 'gather', 'scatter', 'reduce', 'reduce_scatter', 'reduce_scatter_tensor', 'all_reduce', 'all_gather', 'all_gather_into_tensor', 'all_to_all', 'all_to_all_single', 'batch_isend_irecv', 'isend', 'irecv', 'send', 'recv', ] this_module = sys.modules[__name__] for collective in target_collectives: original_fn = getattr(torch.distributed, collective) replaced_fn = getattr(this_module, 'traced_' + collective) setattr(torch.distributed, 'untraced_' + collective, original_fn) setattr(torch.distributed, collective, replaced_fn) def _shunt_torch_communication_objects(): original_p2p = torch.distributed.P2POp setattr(torch.distributed, 'UntracedP2POp', original_p2p) setattr(torch.distributed, 'P2POp', _TracedP2POp) # Each 'traced_<comm>' defines a 'message_size' to compute B/W. # Ref https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md # For each 'traced_<comm>' the corresponding API docs (including args, return) # are available at https://pytorch.org/docs/stable/distributed.html def traced_barrier(group=None, async_op=False, device_ids=None): """Intercepts invocations of torch.distributed.barrier. Args: group: Passed to torch.distributed.barrier async_op: Passed to torch.distributed.barrier device_ids: Passed to torch.distributed.barrier Returns: Output of torch.distributed.barrier """ if _should_rank_record_comm(group): _emit_call_description('barrier', message_size=1, group=group) return torch.distributed.untraced_barrier(group, async_op, device_ids) def traced_broadcast_object_list(object_list, src=0, group=None, device=None): """Intercepts invocations of torch.distributed.broadcast_object_list. Converts objects to tensor data using the pickle library. Then conducts a torch.distributed.broadcast call. Args: object_list: Passed to torch.distributed.broadcast_object_list src: Passed to torch.distributed.broadcast_object_list group: Passed to torch.distributed.broadcast_object_list device: Passed to torch.distributed.broadcast_object_list Returns: Output of torch.distributed.broadcast_object_list """ if _should_rank_record_comm(group, root_rank=src): message_size = 0 for obj in object_list: # Note: This computation is sadly redundant with underlying call :( # For now we don't expect this invocation to be in critical path. buf = io.BytesIO() pickle.Pickler(buf).dump(obj) message_size += buf.getbuffer().nbytes _emit_call_description( 'broadcast_object_list', message_size, group, root_rank=src) return torch.distributed.untraced_broadcast_object_list( object_list, src, group, device) def traced_broadcast(tensor, src, group=None, async_op=False): """Intercepts invocations of torch.distributed.broadcast. Calculate [Ring-B/W] = [Message Size]/[Kernel Time] for large [Message Size] https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf Args: tensor: Passed to torch.distributed.broadcast src: Passed to torch.distributed.broadcast group: Passed to torch.distributed.broadcast async_op: Passed to torch.distributed.broadcast Returns: Output of torch.distributed.broadcast """ if _should_rank_record_comm(group, root_rank=src): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('broadcast', message_size, group, root_rank=src) return torch.distributed.untraced_broadcast( tensor, src, group, async_op) def traced_gather( tensor, gather_list=None, dst=0, group=None, async_op=False): """Intercepts invocations of torch.distributed.gather. Let T := sum([Receive Kernel Time from Rank i] for i != dst) Calculate [P2P-B/W] = [Message Size]/T Each of (n-1) ranks sends a message to the root. Note that any correction factors for the bus bandwidth (e.g. [n-1]/n) depend on the *definition* of 'Message Size'. In some cases, such as for 'gather', we define 'Message Size' so as to omit the size of data that is already local to the destination GPU for the 'gather' operation. In this case, no correction factor is needed. In NCCL tests, they assume all ranks send equal sized messages and include this size of data already resident on the destination GPU. Thus, in there case you see a (n-1)/n correction factor on calculating the bus bandwidth. In general, the goal of computing the bus bandwidth is to compare data transfer rates on the bus relative to peak bus bandwidth. See https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md. https://github.com/NVIDIA/nccl-tests/blob/1a5f551ffd6e/src/gather.cu#L54 https://github.com/pytorch/pytorch/blob/bfd995f0d6bf/torch/csrc/cuda/nccl.cpp#L1040 Args: tensor: Passed to torch.distributed.gather gather_list: Passed to torch.distributed.gather dst: Passed to torch.distributed.gather group: Passed to torch.distributed.gather async_op: Passed to torch.distributed.gather Returns: Output of torch.distributed.gather """ if _should_rank_record_comm(group, root_rank=dst, is_ring=False): message_size = functools.reduce( lambda sz, x: sz + x.nelement() * x.element_size(), gather_list, 0) message_size -= tensor.nelement() * tensor.element_size() _emit_call_description('gather', message_size, group, root_rank=dst) return torch.distributed.untraced_gather( tensor, gather_list, dst, group, async_op) def traced_scatter( tensor, scatter_list=None, src=0, group=None, async_op=False): """Intercepts invocations of torch.distributed.scatter. Let T := sum([Send Kernel Time from Rank i] for i != src) Calculate [P2P-B/W] = [Message Size]/T Each of (n-1) ranks receives a message from the root. There is no (n-1)/n factor as we factor it in [Message Size]. https://github.com/NVIDIA/nccl-tests/blob/1a5f551ffd6e/src/scatter.cu#L50 https://github.com/pytorch/pytorch/blob/bfd995f0d6bf/torch/csrc/cuda/nccl.cpp#L1089 Args: tensor: Passed to torch.distributed.scatter. scatter_list: Passed to torch.distributed.scatter. src: Passed to torch.distributed.scatter group: Passed to torch.distributed.scatter async_op: Passed to torch.distributed.scatter Returns: Output of torch.distributed.scatter """ if _should_rank_record_comm(group, root_rank=src, is_ring=False): message_size = functools.reduce( lambda sz, x: sz + x.nelement() * x.element_size(), scatter_list, 0) message_size -= tensor.nelement() * tensor.element_size() _emit_call_description('scatter', message_size, group, root_rank=src) return torch.distributed.untraced_scatter( tensor, scatter_list, src, group, async_op) def traced_reduce( tensor, dst, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.reduce. Calculate [Ring-B/W] = [Message Size]/[Kernel Time] for large [Message Size] Also see 'traced_broadcast' Args: tensor: Passed to torch.distributed.reduce dst: Passed to torch.distributed.reduce op: Passed to torch.distributed.reduce group: Passed to torch.distributed.reduce async_op: Passed to torch.distributed.reduce Returns: Output of torch.distributed.reduce """ if _should_rank_record_comm(group, root_rank=dst): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('reduce', message_size, group, root_rank=dst) return torch.distributed.untraced_reduce(tensor, dst, op, group, async_op) def traced_reduce_scatter( output, input_list, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.reduce_scatter. Let n := [Group Size]. Calculate [Ring-B/W] = (n-1)/n * [Message Size]/[Kernel Time] Assumes equal tensor sizes. It's the same as first half of ring All-Reduce. Args: output: Passed to torch.distributed.reduce_scatter input_list: Passed to torch.distributed.reduce_scatter op: Passed to torch.distributed.reduce_scatter group: Passed to torch.distributed.reduce_scatter async_op: Passed to torch.distributed.reduce_scatter Returns: Output of torch.distributed.reduce_scatter """ if _should_rank_record_comm(group): message_size = output.nelement() * output.element_size() _emit_call_description('reduce_scatter', message_size, group) return torch.distributed.untraced_reduce_scatter( output, input_list, op, group, async_op) # pylint: disable=redefined-builtin def traced_reduce_scatter_tensor( output, input, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.reduce_scatter_tensor. Similar to 'traced_reduce_scatter' Args: output: Passed to torch.distributed.reduce_scatter_tensor input: Passed to torch.distributed.reduce_scatter_tensor op: Passed to torch.distributed.reduce_scatter_tensor group: Passed to torch.distributed.reduce_scatter_tensor async_op: Passed to torch.distributed.reduce_scatter_tensor Returns: Output of torch.distributed.reduce_scatter_tensor """ if _should_rank_record_comm(group): message_size = output.nelement() * output.element_size() _emit_call_description('reduce_scatter', message_size, group) return torch.distributed.untraced_reduce_scatter_tensor( output, input, op, group, async_op) def traced_all_reduce( tensor, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_reduce. Let n := [Group Size] Calculate [Ring-B/W] = 2(n-1)/n * [Message Size] / [Kernel Time] https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf Args: tensor: Passed to torch.distributed.all_reduce op: Passed to torch.distributed.all_reduce group: Passed to torch.distributed.all_reduce async_op: Passed to torch.distributed.all_reduce Returns: Output of torch.distributed.all_reduce """ if _should_rank_record_comm(group): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('all_reduce', message_size, group) return torch.distributed.untraced_all_reduce( tensor, op, group, async_op) def traced_all_gather(tensor_list, tensor, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_gather. Let n := [Group Size] Calculate [Ring-B/W] = (n-1)/n * [Message Size] / [Kernel Time] Assuming equal tensor sizes. Args: tensor_list: Passed to torch.distributed.all_gather tensor: Passed to torch.distributed.all_gather group: Passed to torch.distributed.all_gather async_op: Passed to torch.distributed.all_gather Returns: Output of torch.distributed.all_gather """ if _should_rank_record_comm(group): message_size = functools.reduce( lambda size, x: size + x.nelement() * x.element_size(), tensor_list, 0) _emit_call_description('all_gather', message_size, group) return torch.distributed.untraced_all_gather( tensor_list, tensor, group, async_op) def traced_all_gather_into_tensor( output_tensor, input_tensor, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_gather_into_tensor. Similar 'traced_all_gather' Args: output_tensor: Passed to torch.distributed.all_gather_into_tensor input_tensor: Passed to torch.distributed.all_gather_into_tensor group: Passed to torch.distributed.all_gather_into_tensor async_op: Passed to torch.distributed.all_gather_into_tensor Returns: Output of torch.distributed.all_gather_into_tensor """ if _should_rank_record_comm(group): message_size = output_tensor.nelement() * output_tensor.element_size() _emit_call_description('all_gather', message_size, group) return torch.distributed.untraced_all_gather_into_tensor( output_tensor, input_tensor, group, async_op) # Note: The TCP Direct team intends to implement a custom version of AllToAll. def traced_all_to_all( output_tensor_list, input_tensor_list, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_to_all. Let S := sum([Message Size on Rank i] for i = 1..n) where n := [Group Size] Let T := [End of last Receive last rank] - [Start of first Send first rank] Calculate [Algo B/W] = S / T. There is no n/(n-1) correction factor as we factor it in [Message Size]. https://github.com/NVIDIA/nccl-tests/blob/1a5f551ffd6e/src/alltoall.cu#L57 https://github.com/pytorch/pytorch/blob/bfd995f0d6bf/torch/csrc/cuda/nccl.cpp#L911 Args: output_tensor_list: Passed to torch.distributed.all_to_all. input_tensor_list: Passed to torch.distributed.all_to_all group: Passed to torch.distributed.all_to_all async_op: Passed to torch.distributed.all_to_all Returns: Output of torch.distributed.all_to_all """ if _should_rank_record_comm(group): message_size = functools.reduce( lambda s, x: s + x.nelement() * x.element_size(), input_tensor_list, 0) # Omit bytes corresponding to send and receive on the same rank self_tensor = input_tensor_list[torch.distributed.get_rank(group)] message_size -= self_tensor.nelement() * self_tensor.element_size() _emit_call_description('all_to_all', message_size, group) return torch.distributed.untraced_all_to_all( output_tensor_list, input_tensor_list, group, async_op) def traced_all_to_all_single( output, input, output_split_sizes=None, input_split_sizes=None, group=None, async_op=False): """Intercepts invocations of torch.distributed.all_to_all_single. Similar to 'traced_all_to_all' Args: output: Passed to torch.distributed.all_to_all_single. input: Passed to torch.distributed.all_to_all_single output_split_sizes: Passed to torch.distributed.all_to_all_single. input_split_sizes: Passed to torch.distributed.all_to_all_single group: Passed to torch.distributed.all_to_all_single async_op: Passed to torch.distributed.all_to_all_single Returns: Output of torch.distributed.all_to_all_single """ if _should_rank_record_comm(group): self_rank = torch.distributed.get_rank(group) if input_split_sizes is not None: self_slice = input_split_sizes[self_rank] else: self_slice = input.size(dim=0) / torch.distributed.get_world_size(group) slice_nelement = input.nelement() / input.size(dim=0) message_size = input.nelement() * input.element_size() message_size -= self_slice * slice_nelement * input.element_size() _emit_call_description('all_to_all_single', message_size, group) return torch.distributed.untraced_all_to_all_single( output, input, output_split_sizes, input_split_sizes, group, async_op) # Note: Each send and receive occurs on indepenent CUDA streams def traced_batch_isend_irecv(p2p_op_list): """Intercepts invocations of torch.distributed.batch_isend_irecv. Calculate [P2P-B/W] = [Message Size]/[Kernel Time] for each send and recv. Args: p2p_op_list: Passed to torch.distributed.batch_isend_irecv. Returns: Output of torch.distributed.batch_isend_irecv """ for p2p in p2p_op_list: if _should_rank_record_comm(p2p.group, peer_rank=p2p.peer, is_ring=False): api = 'send' if p2p.op == torch.distributed.untraced_isend else 'recv' message_size = p2p.tensor.nelement() * p2p.tensor.element_size() _emit_call_description(api, message_size, p2p.group, p2p.peer) return torch.distributed.untraced_batch_isend_irecv(p2p_op_list) def traced_isend(tensor, dst, group=None, tag=0): """Intercepts invocations of torch.distributed.isend. Calculate [P2P-B/W] = [Message Size]/[Kernel Time] Args: tensor: Passed to torch.distributed.isend dst: Passed to torch.distributed.isend group: Passed to torch.distributed.isend tag: Passed to torch.distributed.isend. Returns: Output of torch.distributed.isend """ if _should_rank_record_comm(group, peer_rank=dst, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('send', message_size, group, dst) return torch.distributed.untraced_isend(tensor, dst, group, tag) def traced_irecv(tensor, src=None, group=None, tag=0): """Intercepts invocations of torch.distributed.irecv. Args: tensor: Passed to torch.distributed.irecv src: Passed to torch.distributed.irecv group: Passed to torch.distributed.irecv tag: Passed to torch.distributed.irecv. Returns: Output of torch.distributed.irecv """ if _should_rank_record_comm(group, peer_rank=src, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('recv', message_size, group, src) return torch.distributed.untraced_irecv(tensor, src, group, tag) def traced_send(tensor, dst, group=None, tag=0): """Intercepts invocations of torch.distributed.send. Args: tensor: Passed to torch.distributed.send dst: Passed to torch.distributed.send group: Passed to torch.distributed.send tag: Passed to torch.distributed.send. Returns: Output of torch.distributed.send """ if _should_rank_record_comm(group, peer_rank=dst, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('send', message_size, group, dst) return torch.distributed.untraced_send(tensor, dst, group, tag) def traced_recv(tensor, src=None, group=None, tag=0): """Intercepts invocations of torch.distributed.recv. Args: tensor: Passed to torch.distributed.recv src: Passed to torch.distributed.recv group: Passed to torch.distributed.recv tag: Passed to torch.distributed.recv. Returns: Output of torch.distributed.recv """ if _should_rank_record_comm(group, peer_rank=src, is_ring=False): message_size = tensor.nelement() * tensor.element_size() _emit_call_description('recv', message_size, group, src) return torch.distributed.untraced_recv(tensor, src, group, tag) @functools.lru_cache(maxsize=None) def _should_rank_record_comm( group=None, peer_rank=None, root_rank=None, is_ring=True): """Decides whether a given torch.distributed collective should be recorded. Args: group: The torch process group (i.e. participating GPUs) in this collective. peer_rank: In direct peer to peer operations, the global rank of the peer. root_rank: The global rank of the root GPU, for collectives with a root. is_ring: Whether the default NCCL implementation uses a ring algorithm. Specifying 'peer_rank' and 'is_ring=True' are incompatible. Returns: Whether to record a descriptive NVTX marker, and possibly print a log trace. """ if not _is_current_process_in_group(group): return False if _TRACE_MODE == 'crossnode' and not _is_crossnode_comm(group, peer_rank): return False if not is_ring and root_rank is not None: return torch.distributed.get_rank() == root_rank return True def _is_current_process_in_group(group=None): return torch.distributed.get_rank(group) >= 0 @functools.lru_cache(maxsize=None) def _is_crossnode_comm(group=None, peer_rank=None): """Whether this collective involves communication across nodes. Args: group: The torch process group (i.e. participating GPUs) in this collective. peer_rank: In direct peer to peer operations, the global rank of the peer. Returns: Whether this collective involves communications across nodes. """ count_per_node = torch.cuda.device_count() if peer_rank is not None: this_node = int(torch.distributed.get_rank() / count_per_node) peer_node = int(peer_rank / count_per_node) return this_node != peer_node else: if group is not None: ranks = torch.distributed.get_process_group_ranks(group=group) else: ranks = [*range(torch.distributed.get_world_size())] nodes = list(map(lambda rank: int(rank / count_per_node), ranks)) return any([node != nodes[0] for node in nodes]) def _emit_call_description( name, message_size, group=None, peer_rank=None, root_rank=None): call_description = _TorchDistributedCallDescriptor( name, message_size, group, peer_rank, root_rank).to_json() nvtx.mark(call_description) if _should_rank_print(group, peer_rank, root_rank): print(call_description) class _TorchDistributedCallDescriptor: """Description of a torch.distributed comm call to be stored as NVTX marker. """ def __init__( self, name, message_size, group=None, peer_rank=None, root_rank=None): self.name = name self.rank = torch.distributed.get_rank() self.source_line = _get_call_source_line() self.message_size = message_size self.device = torch.cuda.current_device() if group is not None: self.group_ranks = torch.distributed.get_process_group_ranks(group=group) if peer_rank is not None: self.peer_rank = peer_rank if root_rank is not None: self.root_rank = root_rank def to_json(self): return json.dumps(self, default=lambda o: o.__dict__) def _should_rank_print(group=None, peer_rank=None, root_rank=None): if root_rank is not None: leader = root_rank elif group is not None: leader = torch.distributed.get_global_rank(group, 0) else: leader = 0 return (peer_rank is not None) or torch.distributed.get_rank() == leader # A fixed depth works for all cases here def _get_call_source_line(depth=4): caller = inspect.getframeinfo(inspect.stack()[depth][0]) return f'{caller.filename}:{caller.lineno}' # We need to un-hide the original type for 'batch_isend_irecv' due to type # checks performed by torch.distributed. This is not an issue as by then we # have already recorded the call. class _TracedP2POp(torch.distributed.P2POp): """Used to redirect torch.distributed.i{send,recv} on 'batch_isend_irecv'. """ def __init__(self, op, tensor, peer, group=None, tag=0): original_op = _get_original_p2p_op(op) torch.distributed.UntracedP2POp.__init__( self, original_op, tensor, peer, group, tag) def __new__(cls, op, tensor, peer, group=None, tag=0): original_op = _get_original_p2p_op(op) return torch.distributed.UntracedP2POp.__new__( cls, original_op, tensor, peer, group, tag) def _get_original_p2p_op(op): if op == torch.distributed.isend: return torch.distributed.untraced_isend elif op == torch.distributed.irecv: return torch.distributed.untraced_irecv