in tutorials-and-examples/tpu-examples/single-host-inference/jax/stable-diffusion/stable_diffusion_request.py [0:0]
def send_request(server_ip, prompt="Painting of a squirrel skating in New York"):
logging.info("Establish the gRPC connection with the model server.")
_PREDICTION_SERVICE_HOST = str(server_ip)
_GRPC_PORT = 8500
options = [
("grpc.max_send_message_length", 512 * 1024 * 1024),
("grpc.max_receive_message_length", 512 * 1024 * 1024),
]
channel = grpc.insecure_channel(
f"{_PREDICTION_SERVICE_HOST}:{_GRPC_PORT}", options=options
)
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
tokenizer = AutoTokenizer.from_pretrained(
"CompVis/stable-diffusion-v1-4", subfolder="tokenizer", revision="bf16"
)
logging.info(f'The prompt is "{prompt}".')
logging.info("Tokenize the prompt.")
inputs = dict()
inputs["prompt_ids"] = tokenizer(
prompt,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="tf",
).input_ids
request = predict_pb2.PredictRequest()
request.model_spec.name = "stable_diffusion"
request.model_spec.signature_name = (
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
)
for key, val in inputs.items():
request.inputs[key].MergeFrom(tf.make_tensor_proto(val))
logging.info("Send the request to the model server.")
res = stub.Predict(request)
logging.info("Predict completed.")
outputs = {
name: tf.io.parse_tensor(serialized.SerializeToString(), serialized.dtype)
for name, serialized in res.outputs.items()
}
image = outputs["output_0"].numpy()
image = image.reshape(image.shape[1:])
image = (image * 255).round().astype("uint8")
pil_image = Image.fromarray(image)
image_file = "stable_diffusion_images.jpg"
pil_image = pil_image.save(image_file)
logging.info(f'The image was saved as "{image_file}"')