benchmarks/benchmark/tools/locust-load-inference/locust-docker/locust-tasks/load_data.py (76 lines of code) (raw):
#!/usr/bin/env python
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import random
import re
import time
from google.cloud import storage
from transformers import AutoTokenizer, PreTrainedTokenizerBase
logging.basicConfig(level=logging.INFO)
def load_test_prompts(gcs_path: str, tokenizer: PreTrainedTokenizerBase, max_prompt_len: int):
# strip the "gs://", split into respective paths
split_path = gcs_path[5:].split('/', 1)
bucket_name = split_path[0]
object_name = split_path[1]
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(object_name)
if not bucket.exists():
raise ValueError(
f"Cannot access gs://{bucket_name}, it may not exist or you may not have access to this bucket.")
if not blob.exists():
raise ValueError(
f"Cannot access {gcs_path}, it may not exist or you may not have access to this object.")
test_data = []
start = time.time()
with blob.open("r") as f:
for prompt in f:
prompt_token_ids = tokenizer(prompt).input_ids
prompt_len = len(prompt_token_ids)
if prompt_len < 4:
# Prune too short sequences.
# This is because TGI causes errors when the input or output length
# is too short.
continue
if prompt_len > max_prompt_len:
# Prune too long sequences.
continue
test_data.append(prompt)
end = time.time()
total_time = end - start
logging.info(f"Filtered test prompts after {total_time} seconds.")
return test_data
def main(gcs_path: str, tokenizer_name: str, max_prompt_len: int, max_num_prompts: int):
global test_data
global tokenizer
try:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name)
except Exception as e:
logging.error(f"Failed to create tokenizer: {e}")
logging.info(f"Successfully loaded tokenizer {tokenizer_name}.")
logging.info(f"Loading test prompts from {gcs_path}.")
try:
test_data = load_test_prompts(gcs_path, tokenizer, max_prompt_len)
except Exception as e:
logging.error(f"Failed to load test data from {gcs_path}: {e}")
logging.info(f"Loaded {len(test_data)} test prompts from {gcs_path}.")
if max_num_prompts < len(test_data):
test_data = random.sample(test_data, max_num_prompts)
# Rewrite filtered dataset to tmp file.
with open("locust-tasks/filtered_prompts.txt", "x") as f:
for prompt in test_data:
strippedPrompt = prompt.replace("\n", " ")
f.write(f'{strippedPrompt}\n')
logging.info(
f"Wrote {len(test_data)} test prompts to locust-tasks/filtered_prompts.txt")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='Filter and prepare dataset for Locust benchmarking test.')
parser.add_argument('--gcs_path', type=str,
help='gcs path to download prompts from.')
parser.add_argument('--max_prompt_len', type=int,
help='Maximum number of input tokens. Used as max filter on dataset prompts.', default=1024)
parser.add_argument('--max_num_prompts', type=int,
help='maximum number of prompts to keep for dataset.', default=100)
parser.add_argument('--tokenizer', type=str,
help='Name or path of the tokenizer.')
args = parser.parse_args()
gcs_uri_pattern = "^gs:\/\/[a-z0-9.\-_]{3,63}\/(.+\/)*(.+)$"
if not re.match(gcs_uri_pattern, args.gcs_path):
raise ValueError(
f"Invalid GCS path: {args.gcs_path}, expecting format \"gs://$BUCKET/$FILENAME\"")
main(args.gcs_path, args.tokenizer, args.max_prompt_len, args.max_num_prompts)