tutorials-and-examples/tpu-examples/single-host-inference/jax/stable-diffusion/stable_diffusion_request.py (75 lines of code) (raw):

# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import argparse import ipaddress import logging import grpc from PIL import Image import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc from transformers import AutoTokenizer def validate_ip_address(ip_string): try: ip_object = ipaddress.ip_address(ip_string) print("The IP address '{ip_object}' is valid.") except ValueError: print("The IP address '{ip_string}' is not valid") def send_request(server_ip, prompt="Painting of a squirrel skating in New York"): logging.info("Establish the gRPC connection with the model server.") _PREDICTION_SERVICE_HOST = str(server_ip) _GRPC_PORT = 8500 options = [ ("grpc.max_send_message_length", 512 * 1024 * 1024), ("grpc.max_receive_message_length", 512 * 1024 * 1024), ] channel = grpc.insecure_channel( f"{_PREDICTION_SERVICE_HOST}:{_GRPC_PORT}", options=options ) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) tokenizer = AutoTokenizer.from_pretrained( "CompVis/stable-diffusion-v1-4", subfolder="tokenizer", revision="bf16" ) logging.info(f'The prompt is "{prompt}".') logging.info("Tokenize the prompt.") inputs = dict() inputs["prompt_ids"] = tokenizer( prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="tf", ).input_ids request = predict_pb2.PredictRequest() request.model_spec.name = "stable_diffusion" request.model_spec.signature_name = ( tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY ) for key, val in inputs.items(): request.inputs[key].MergeFrom(tf.make_tensor_proto(val)) logging.info("Send the request to the model server.") res = stub.Predict(request) logging.info("Predict completed.") outputs = { name: tf.io.parse_tensor(serialized.SerializeToString(), serialized.dtype) for name, serialized in res.outputs.items() } image = outputs["output_0"].numpy() image = image.reshape(image.shape[1:]) image = (image * 255).round().astype("uint8") pil_image = Image.fromarray(image) image_file = "stable_diffusion_images.jpg" pil_image = pil_image.save(image_file) logging.info(f'The image was saved as "{image_file}"') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("external_ip") args = parser.parse_args() validate_ip_address(args.external_ip) logging.basicConfig( format=( "%(asctime)s.%(msecs)03d %(levelname)-8s [%(pathname)s:%(lineno)d]" " %(message)s" ), level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S", ) send_request(args.external_ip)