in retail/recommendation-system/bqml-mlops/part_2/pipeline.py [0:0]
def main(**args):
#Specify pipeline argument values
arguments = {
'project_id': args['project_id'],
'dataset_name': args['dataset_name'],
'model_storage': args['model_storage']
}
pipeline_func = training_pipeline
pipeline_filename = pipeline_func.__name__ + '.zip'
import kfp.compiler as compiler
import kfp
compiler.Compiler().compile(pipeline_func, pipeline_filename)
#Get or create an experiment and submit a pipeline run
client = kfp.Client(args['kfp_host'])
experiment = client.create_experiment('hotel_recommender_experiment')
#Submit a pipeline run
run_name = pipeline_func.__name__ + ' run'
run_result = client.run_pipeline(experiment.id, run_name, pipeline_filename, arguments)