retail/recommendation-system/bqml-scann/ann_grpc/match_pb2_grpc.py (72 lines of code) (raw):

# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc import match_pb2 as match__pb2 class MatchServiceStub(object): """MatchService is a Google managed service for efficient vector similarity search at scale. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Match = channel.unary_unary( '/google.cloud.aiplatform.container.v1alpha1.MatchService/Match', request_serializer=match__pb2.MatchRequest.SerializeToString, response_deserializer=match__pb2.MatchResponse.FromString, ) self.BatchMatch = channel.unary_unary( '/google.cloud.aiplatform.container.v1alpha1.MatchService/BatchMatch', request_serializer=match__pb2.BatchMatchRequest.SerializeToString, response_deserializer=match__pb2.BatchMatchResponse.FromString, ) class MatchServiceServicer(object): """MatchService is a Google managed service for efficient vector similarity search at scale. """ def Match(self, request, context): """Returns the nearest neighbors for the query. If it is a sharded deployment, calls the other shards and aggregates the responses. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def BatchMatch(self, request, context): """Returns the nearest neighbors for batch queries. If it is a sharded deployment, calls the other shards and aggregates the responses. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_MatchServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'Match': grpc.unary_unary_rpc_method_handler( servicer.Match, request_deserializer=match__pb2.MatchRequest.FromString, response_serializer=match__pb2.MatchResponse.SerializeToString, ), 'BatchMatch': grpc.unary_unary_rpc_method_handler( servicer.BatchMatch, request_deserializer=match__pb2.BatchMatchRequest.FromString, response_serializer=match__pb2.BatchMatchResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.cloud.aiplatform.container.v1alpha1.MatchService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class MatchService(object): """MatchService is a Google managed service for efficient vector similarity search at scale. """ @staticmethod def Match(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/google.cloud.aiplatform.container.v1alpha1.MatchService/Match', match__pb2.MatchRequest.SerializeToString, match__pb2.MatchResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def BatchMatch(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/google.cloud.aiplatform.container.v1alpha1.MatchService/BatchMatch', match__pb2.BatchMatchRequest.SerializeToString, match__pb2.BatchMatchResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)