genai-on-vertex-ai/gemini/model_upgrades/document_qna/vertex_script/eval.py (71 lines of code) (raw):

import json import os import pandas as pd import vertexai from datetime import datetime from vertexai.evaluation import EvalTask, EvalResult, MetricPromptTemplateExamples from vertexai.generative_models import GenerativeModel def load_dataset(dataset_local_path: str): with open(dataset_local_path, 'r') as file: data = [json.loads(line) for line in file if line.strip()] df = pd.DataFrame(data) df['document_text'] = df['document_path'].apply(lambda doc_path: open(doc_path, 'r').read()) return df[['question', 'reference', 'document_text']] def run_eval(experiment_name: str, baseline_model: str, candidate_model: str, prompt_template_local_path: str, dataset_local_path: str): timestamp = f"{datetime.now().strftime('%b-%d-%H-%M-%S')}".lower() prompt_template = open(prompt_template_local_path).read() task = EvalTask( dataset=load_dataset(dataset_local_path), metrics=[MetricPromptTemplateExamples.Pointwise.QUESTION_ANSWERING_QUALITY], experiment=experiment_name ) baseline_results = task.evaluate( experiment_run_name=f"{timestamp}-{baseline_model.replace('.', '-')}", prompt_template=prompt_template, model=GenerativeModel(baseline_model) ) candidate_results = task.evaluate( experiment_run_name=f"{timestamp}-{candidate_model.replace('.', '-')}", prompt_template=prompt_template, model=GenerativeModel(candidate_model) ) print(f"Baseline model score: {baseline_results.summary_metrics['question_answering_quality/mean']*20:.1f}%") print(f"Candidate model score: {candidate_results.summary_metrics['question_answering_quality/mean']*20:.1f}%") export_results(baseline_model, baseline_results, candidate_model, candidate_results, f'eval_results_{timestamp}.json') def export_results(baseline_model: str, baseline_results: EvalResult, candidate_model: str, candidate_results: EvalResult, file_name: str): '''Export combined results of the two eval runs to a single JSON file that can be visualized in LLM Comparator.''' with open(file_name, 'w') as f: f.write(json.dumps(dict( models=[dict(name=baseline_model), dict(name=candidate_model)], examples=combine_eval_runs(baseline_results, candidate_results), metadata={'custom_fields_schema':[]} ))) print(f"Evaluation results saved to {file_name} in LLM Comparator format: https://pair-code.github.io/llm-comparator/") def combine_eval_runs(baseline: EvalResult, candidate: EvalResult) -> list[dict]: '''Combine the evaluation results for the two models and calculate the pairwise score.''' if None in [baseline, candidate] or len(baseline.metrics_table.index) != len(candidate.metrics_table.index): raise ValueError(f'Invalid eval results!') examples = [] for b, c in zip(baseline.metrics_table.to_dict(orient='records'), candidate.metrics_table.to_dict(orient='records')): score_b = b.get('question_answering_quality/score') score_c = c.get('question_answering_quality/score') examples.append(dict( input_text=b.get('prompt'), output_text_a=b.get('response').strip(), output_text_b=c.get('response').strip(), score = 0 if score_b == score_c else 1.0 if score_b > score_c else -1.0, tags=[], individual_rater_scores=[] )) return examples if __name__ == '__main__': if os.getenv('PROJECT_ID', 'your-project-id') == 'your-project-id': raise ValueError('Please configure your Google Cloud Project ID.') vertexai.init(project=os.getenv('PROJECT_ID'), location='us-central1') run_eval( experiment_name = 'eval-document-qna-demo', baseline_model = 'gemini-1.5-flash-001', candidate_model = 'gemini-2.0-flash-001', prompt_template_local_path = 'prompt_template.txt', dataset_local_path = 'dataset.jsonl' )