genai-on-vertex-ai/gemini/model_upgrades/summarization/vertex_script/eval.py (44 lines of code) (raw):
import json
import os
import pandas as pd
import vertexai
from datetime import datetime
from vertexai.evaluation import EvalTask, MetricPromptTemplateExamples
from vertexai.generative_models import GenerativeModel
def load_dataset(dataset_local_path: str):
with open(dataset_local_path, 'r') as file:
data = [json.loads(line) for line in file if line.strip()]
df = pd.DataFrame(data)
df['document_text'] = df['document_path'].apply(lambda doc_path: open(doc_path, 'r').read())
return df[['document_text', 'reference']]
def run_eval(experiment_name: str, baseline_model: str, candidate_model: str, prompt_template_local_path: str, dataset_local_path: str):
timestamp = f"{datetime.now().strftime('%b-%d-%H-%M-%S')}".lower()
prompt_template = open(prompt_template_local_path).read()
task = EvalTask(
dataset=load_dataset(dataset_local_path),
metrics=[MetricPromptTemplateExamples.Pointwise.SUMMARIZATION_QUALITY],
experiment=experiment_name
)
baseline_results = task.evaluate(
experiment_run_name=f"{timestamp}-{baseline_model.replace('.', '-')}",
prompt_template=prompt_template,
model=GenerativeModel(baseline_model)
)
candidate_results = task.evaluate(
experiment_run_name=f"{timestamp}-{candidate_model.replace('.', '-')}",
prompt_template=prompt_template,
model=GenerativeModel(candidate_model)
)
print(f"Baseline model score: {baseline_results.summary_metrics['summarization_quality/mean']:.2f}")
print(f"Candidate model score: {candidate_results.summary_metrics['summarization_quality/mean']:.2f}")
if __name__ == '__main__':
if os.getenv("PROJECT_ID", "your-project-id") == "your-project-id":
raise ValueError("Please configure your Google Cloud Project ID.")
vertexai.init(project=os.getenv("PROJECT_ID"), location='us-central1')
run_eval(
experiment_name = 'eval-summarization-demo',
baseline_model = 'gemini-1.5-flash-001',
candidate_model = 'gemini-2.0-flash-001',
prompt_template_local_path = 'prompt_template.txt',
dataset_local_path = 'dataset.jsonl'
)