in google_cloud_automlops/orchestration/kfp.py [0:0]
def __init__(self,
func: Optional[Callable] = None,
name: Optional[str] = None,
description: Optional[str] = None,
comps_dict: dict = None) -> None:
"""Initiates a KFP pipeline object created out of a function holding all necessary code.
Args:
func (Optional[Callable]): The python function to create a pipeline from. The functio
should have type annotations for all its arguments, indicating how it is intended
to be used (e.g. as an input/output Artifact object, a plain parameter, or a path
to a file). Defaults to None.
name (Optional[str]): The name of the pipeline. Defaults to None.
description (Optional[str]): Short description of what the pipeline does. Defaults to None.
comps_list (dict): Dictionary of potential components for pipeline to utilize imported
as the global held in AutoMLOps.py. Defaults to None.
"""
super().__init__(
func=func,
name=name,
description=description,
comps_dict=comps_dict)
# Create pipeline scaffold attribute, which is an empty pipelines template
# without the DAG definition
self.pipeline_scaffold = (
self._get_pipeline_decorator()
+ self.src_code
+ self._get_compile_step())