fast/project-templates/secops-anonymization-pipeline/source/shared/utils.py (95 lines of code) (raw):
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import logging
import math
import csv
from google.cloud import storage
from datetime import datetime, timedelta, timezone, time
LOGGER = logging.getLogger('secops')
"""Utility functions required for ingestion scripts."""
MAX_FILE_SIZE = 61440000 # Max size supported by DLP
def format_date_time_range(date_input):
"""
Creates datetime objects for the beginning and end of the input date
and formats them.
Args:
date_input: A string representing the date (e.g., "2024-06-10").
Returns:
A tuple containing two formatted strings:
- Start of day: "YYYY-MM-DDTHH:MM:SSZ"
- End of day: "YYYY-MM-DDTHH:MM:SSZ"
"""
date_obj = datetime.strptime(date_input, "%Y-%m-%d")
start_of_day = datetime.combine(date_obj.date(), time.min,
tzinfo=timezone.utc)
end_of_day = start_of_day + timedelta(days=1, seconds=-1)
return start_of_day, end_of_day
def list_anonymized_folders(bucket_name, folder_name):
"""Lists all folders (prefixes) within a specified folder in a GCS bucket.
Args:
bucket_name: Name of the GCS bucket.
folder_name: Name of the folder (prefix) to search within.
Returns:
A list of folder names (prefixes) found.
"""
folders = []
storage_client = storage.Client()
for blob in storage_client.list_blobs(bucket_name, prefix=f"{folder_name}/"):
folder_name = blob.name.split('/')[1]
if not folder_name in folders:
folders.append(folder_name)
return folders
def delete_folder(bucket_name, folder_name):
"""Deletes a folder from a Google Cloud Storage bucket.
Args:
bucket_name: The name of the bucket.
folder_name: The name of the folder to delete.
"""
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blobs = list(bucket.list_blobs(prefix=folder_name))
bucket.delete_blobs(blobs)
print(f"Folder {folder_name} deleted from bucket {bucket_name}")
def list_log_files(bucket_name, folder_name):
"""Lists all folders (prefixes) within a specified folder in a GCS bucket.
Args:
bucket_name: Name of the GCS bucket.
folder_name: Name of the folder (prefix) to search within.
Returns:
A list of folder names (prefixes) found.
"""
storage_client = storage.Client()
csv_files = []
for blob in storage_client.list_blobs(bucket_name, prefix=f"{folder_name}/"):
if blob.name.endswith(".log") or blob.name.endswith(".csv"):
csv_files.append(blob.name)
return csv_files
def split_csv(bucket_name, blob_name, file_size):
"""Splits a CSV file into smaller chunks and uploads them back to the bucket.
Args:
bucket_name: The name of the GCS bucket.
blob_name: The name of the CSV blob in the bucket.
max_file_size: The maximum size of each chunk in bytes.
"""
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
# Download the blob to a local file
temp_file = '/tmp/temp.csv'
blob.download_to_filename(temp_file)
file = open(temp_file, encoding="utf8")
numline = sum(1 for row in csv.reader(file))
# Read the CSV file in chunks
chunk_number = math.ceil(numline * MAX_FILE_SIZE / file_size)
index = 0
lines = []
with open(temp_file, 'r', encoding="utf8") as f_in:
reader = csv.reader(f_in, delimiter='\n')
for line in reader:
lines.append(line[0] + "\n")
if len(lines) == chunk_number:
chunk_filename = f'{blob_name.split(".")[0]}_{index}.log'
chunk_path = f'/tmp/temp-{index}.csv'
with open(chunk_path, 'w') as fout:
fout.writelines(lines)
chunk_blob = bucket.blob(f'{chunk_filename}')
chunk_blob.upload_from_filename(chunk_path)
print(f'Uploaded {chunk_filename} to {bucket_name}')
os.remove(chunk_path) # Remove the local chunk file
index += 1
lines = []
chunk_filename = f'{blob_name.split(".")[0]}_{index}.log'
chunk_path = f'/tmp/temp-{index}.csv'
with open(chunk_path, 'w') as fout:
fout.writelines(lines)
chunk_blob = bucket.blob(f'{chunk_filename}')
chunk_blob.upload_from_filename(chunk_path)
print(f'Uploaded {chunk_filename} to {bucket_name}')
os.remove(chunk_path) # Remove the local chunk file
index += 1
lines = []
# Remove the temporary file
os.remove(temp_file)
# remove old log file
blob = bucket.blob(blob_name)
blob.delete()
def split_and_rename_csv_to_log_files(bucket_name, folder_name):
"""Renames all .csv files to .log files within a GCS bucket folder (and subfolders).
Args:
bucket_name (str): Name of the GCS bucket.
folder_prefix (str): Prefix of the folder within the bucket to process.
"""
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
blobs = storage_client.list_blobs(bucket, prefix=f"{folder_name}/")
for blob in blobs:
if blob.name.endswith(".csv") and blob.size >= MAX_FILE_SIZE:
split_csv(bucket_name, blob.name, blob.size)
elif blob.name.endswith(".csv"):
new_name = blob.name.replace(".csv", ".log")
bucket.rename_blob(blob, new_name)
def get_secops_export_folders_for_date(bucket_name, export_date):
storage_client = storage.Client()
export_ids = []
for blob in storage_client.list_blobs(bucket_name):
if "_$folder$" in blob.name:
continue
if blob.time_created.strftime(
"%Y-%m-%d") == export_date and blob.name.split(
'/')[0] not in export_ids:
export_ids.append(blob.name.split('/')[0])
return export_ids