ml-ops-dag.py (101 lines of code) (raw):

# * Copyright 2022 Google LLC # * # * Licensed under the Apache License, Version 2.0 (the "License"); # * you may not use this file except in compliance with the License. # * You may obtain a copy of the License at # * # * http://www.apache.org/licenses/LICENSE-2.0 # * # * Unless required by applicable law or agreed to in writing, software # * distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. import yaml from os import path from airflow import DAG from airflow.models import Variable from airflow.operators.python import PythonOperator from airflow.providers.cncf.kubernetes.operators.pod import KubernetesPodOperator from kubernetes import client, config from kubernetes.client import models from kubernetes.client.rest import ApiException GCP_PROJECT_ID = Variable.get("GCP_PROJECT_ID") BUCKET_DATA_NAME = Variable.get("BUCKET_DATA_NAME") HF_TOKEN = Variable.get("HF_TOKEN") KAGGLE_USERNAME = Variable.get("KAGGLE_USERNAME") KAGGLE_KEY = Variable.get("KAGGLE_KEY") JOB_NAMESPACE = Variable.get("JOB_NAMESPACE", default_var="airflow") def model_serving(): config.load_incluster_config() k8s_apps_v1 = client.AppsV1Api() k8s_core_v1 = client.CoreV1Api() while True: try: k8s_apps_v1.delete_namespaced_deployment( namespace="airflow", name="inference-deployment", body=client.V1DeleteOptions( propagation_policy="Foreground", grace_period_seconds=5 ) ) except ApiException: break print("Deployment inference-deployment deleted") with open(path.join(path.dirname(__file__), "inference.yaml")) as f: dep = yaml.safe_load(f) resp = k8s_apps_v1.create_namespaced_deployment( body=dep, namespace="airflow") print(f"Deployment created. Status='{resp.metadata.name}'") while True: try: k8s_core_v1.delete_namespaced_service( namespace="airflow", name="llm-service", body=client.V1DeleteOptions( propagation_policy="Foreground", grace_period_seconds=5 ) ) except ApiException: break print("Service llm-service deleted") with open(path.join(path.dirname(__file__), "inference-service.yaml")) as f: dep = yaml.safe_load(f) resp = k8s_core_v1.create_namespaced_service( body=dep, namespace="airflow") print(f"Service created. Status='{resp.metadata.name}'") with DAG(dag_id="mlops-dag", catchup=False) as dag: # Step 1: Fetch raw data to GCS Bucket dataset_download = KubernetesPodOperator( task_id="dataset_download_task", namespace=JOB_NAMESPACE, image="us-central1-docker.pkg.dev/{{ var.value.GCP_PROJECT_ID }}/mlops-airflow-repo/dataset-download:latest", name="dataset-download", service_account_name="airflow-mlops-sa", env_vars={ "KAGGLE_USERNAME":KAGGLE_USERNAME, "KAGGLE_KEY":KAGGLE_KEY, "BUCKET_DATA_NAME":BUCKET_DATA_NAME } ) # Step 2: Run GKEJob for data preparation data_preparation = KubernetesPodOperator( task_id="data_pipeline_task", namespace=JOB_NAMESPACE, image="us-central1-docker.pkg.dev/{{ var.value.GCP_PROJECT_ID }}/mlops-airflow-repo/data-preparation:latest", name="data-preparation", service_account_name="airflow-mlops-sa", env_vars={ "GCP_PROJECT_ID":GCP_PROJECT_ID, "BUCKET_DATA_NAME":BUCKET_DATA_NAME, "DATASET_LIMIT": "1000", "HF_TOKEN":HF_TOKEN } ) # Step 3: Run GKEJob for fine tuning fine_tuning = KubernetesPodOperator( task_id="fine_tuning_task", namespace=JOB_NAMESPACE, image="us-central1-docker.pkg.dev/{{ var.value.GCP_PROJECT_ID }}/mlops-airflow-repo/finetuning:latest", name="fine-tuning", service_account_name="airflow-mlops-sa", startup_timeout_seconds=600, container_resources=models.V1ResourceRequirements( requests={"nvidia.com/gpu": "1"}, limits={"nvidia.com/gpu": "1"} ), env_vars={ "BUCKET_DATA_NAME":BUCKET_DATA_NAME, "HF_TOKEN":HF_TOKEN } ) # Step 4: Run GKE Deployment for model serving model_serving = PythonOperator( task_id="model_serving", python_callable=model_serving ) dataset_download >> data_preparation >> fine_tuning >> model_serving