gve_tx_dqo.c (832 lines of code) (raw):
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2024 Google LLC
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_inet6.h"
#include "gve.h"
#include "gve_dqo.h"
static void
gve_unmap_packet(struct gve_tx_ring *tx,
struct gve_tx_pending_pkt_dqo *pending_pkt)
{
bus_dmamap_sync(tx->dqo.buf_dmatag, pending_pkt->dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(tx->dqo.buf_dmatag, pending_pkt->dmamap);
}
static void
gve_clear_qpl_pending_pkt(struct gve_tx_pending_pkt_dqo *pending_pkt)
{
pending_pkt->qpl_buf_head = -1;
pending_pkt->num_qpl_bufs = 0;
}
static void
gve_free_tx_mbufs_dqo(struct gve_tx_ring *tx)
{
struct gve_tx_pending_pkt_dqo *pending_pkt;
int i;
for (i = 0; i < tx->dqo.num_pending_pkts; i++) {
pending_pkt = &tx->dqo.pending_pkts[i];
if (!pending_pkt->mbuf)
continue;
if (gve_is_qpl(tx->com.priv))
gve_clear_qpl_pending_pkt(pending_pkt);
else
gve_unmap_packet(tx, pending_pkt);
m_freem(pending_pkt->mbuf);
pending_pkt->mbuf = NULL;
}
}
void
gve_tx_free_ring_dqo(struct gve_priv *priv, int i)
{
struct gve_tx_ring *tx = &priv->tx[i];
struct gve_ring_com *com = &tx->com;
int j;
if (tx->dqo.desc_ring != NULL) {
gve_dma_free_coherent(&tx->desc_ring_mem);
tx->dqo.desc_ring = NULL;
}
if (tx->dqo.compl_ring != NULL) {
gve_dma_free_coherent(&tx->dqo.compl_ring_mem);
tx->dqo.compl_ring = NULL;
}
if (tx->dqo.pending_pkts != NULL) {
gve_free_tx_mbufs_dqo(tx);
if (!gve_is_qpl(priv) && tx->dqo.buf_dmatag) {
for (j = 0; j < tx->dqo.num_pending_pkts; j++)
if (tx->dqo.pending_pkts[j].state !=
GVE_PACKET_STATE_UNALLOCATED)
bus_dmamap_destroy(tx->dqo.buf_dmatag,
tx->dqo.pending_pkts[j].dmamap);
}
free(tx->dqo.pending_pkts, M_GVE);
tx->dqo.pending_pkts = NULL;
}
if (!gve_is_qpl(priv) && tx->dqo.buf_dmatag)
bus_dma_tag_destroy(tx->dqo.buf_dmatag);
if (gve_is_qpl(priv) && tx->dqo.qpl_bufs != NULL) {
free(tx->dqo.qpl_bufs, M_GVE);
tx->dqo.qpl_bufs = NULL;
}
if (com->qpl != NULL) {
gve_free_qpl(priv, com->qpl);
com->qpl = NULL;
}
}
static int
gve_tx_alloc_rda_fields_dqo(struct gve_tx_ring *tx)
{
struct gve_priv *priv = tx->com.priv;
int err;
int j;
/*
* DMA tag for mapping Tx mbufs
* The maxsize, nsegments, and maxsegsize params should match
* the if_sethwtso* arguments in gve_setup_ifnet in gve_main.c.
*/
err = bus_dma_tag_create(
bus_get_dma_tag(priv->dev), /* parent */
1, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
GVE_TSO_MAXSIZE_DQO, /* maxsize */
GVE_TX_MAX_DATA_DESCS_DQO, /* nsegments */
GVE_TX_MAX_BUF_SIZE_DQO, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&tx->dqo.buf_dmatag);
if (err != 0) {
device_printf(priv->dev, "%s: bus_dma_tag_create failed: %d\n",
__func__, err);
return (err);
}
for (j = 0; j < tx->dqo.num_pending_pkts; j++) {
err = bus_dmamap_create(tx->dqo.buf_dmatag, 0,
&tx->dqo.pending_pkts[j].dmamap);
if (err != 0) {
device_printf(priv->dev,
"err in creating pending pkt dmamap %d: %d",
j, err);
return (err);
}
tx->dqo.pending_pkts[j].state = GVE_PACKET_STATE_FREE;
}
return (0);
}
int
gve_tx_alloc_ring_dqo(struct gve_priv *priv, int i)
{
struct gve_tx_ring *tx = &priv->tx[i];
uint16_t num_pending_pkts;
int err;
/* Descriptor ring */
err = gve_dma_alloc_coherent(priv,
sizeof(union gve_tx_desc_dqo) * priv->tx_desc_cnt,
CACHE_LINE_SIZE, &tx->desc_ring_mem);
if (err != 0) {
device_printf(priv->dev,
"Failed to alloc desc ring for tx ring %d", i);
goto abort;
}
tx->dqo.desc_ring = tx->desc_ring_mem.cpu_addr;
/* Completion ring */
err = gve_dma_alloc_coherent(priv,
sizeof(struct gve_tx_compl_desc_dqo) * priv->tx_desc_cnt,
CACHE_LINE_SIZE, &tx->dqo.compl_ring_mem);
if (err != 0) {
device_printf(priv->dev,
"Failed to alloc compl ring for tx ring %d", i);
goto abort;
}
tx->dqo.compl_ring = tx->dqo.compl_ring_mem.cpu_addr;
/*
* pending_pkts array
*
* The max number of pending packets determines the maximum number of
* descriptors which maybe written to the completion queue.
*
* We must set the number small enough to make sure we never overrun the
* completion queue.
*/
num_pending_pkts = priv->tx_desc_cnt;
/*
* Reserve space for descriptor completions, which will be reported at
* most every GVE_TX_MIN_RE_INTERVAL packets.
*/
num_pending_pkts -= num_pending_pkts / GVE_TX_MIN_RE_INTERVAL;
tx->dqo.num_pending_pkts = num_pending_pkts;
tx->dqo.pending_pkts = malloc(
sizeof(struct gve_tx_pending_pkt_dqo) * num_pending_pkts,
M_GVE, M_WAITOK | M_ZERO);
if (gve_is_qpl(priv)) {
int qpl_buf_cnt;
tx->com.qpl = gve_alloc_qpl(priv, i, GVE_TX_NUM_QPL_PAGES_DQO,
/*single_kva*/false);
if (tx->com.qpl == NULL) {
device_printf(priv->dev,
"Failed to alloc QPL for tx ring %d", i);
err = ENOMEM;
goto abort;
}
qpl_buf_cnt = GVE_TX_BUFS_PER_PAGE_DQO *
tx->com.qpl->num_pages;
tx->dqo.qpl_bufs = malloc(
sizeof(*tx->dqo.qpl_bufs) * qpl_buf_cnt,
M_GVE, M_WAITOK | M_ZERO);
} else
gve_tx_alloc_rda_fields_dqo(tx);
return (0);
abort:
gve_tx_free_ring_dqo(priv, i);
return (err);
}
static void
gve_extract_tx_metadata_dqo(const struct mbuf *mbuf,
struct gve_tx_metadata_dqo *metadata)
{
uint32_t hash = mbuf->m_pkthdr.flowid;
uint16_t path_hash;
metadata->version = GVE_TX_METADATA_VERSION_DQO;
if (hash) {
path_hash = hash ^ (hash >> 16);
path_hash &= (1 << 15) - 1;
if (__predict_false(path_hash == 0))
path_hash = ~path_hash;
metadata->path_hash = path_hash;
}
}
static void
gve_tx_fill_pkt_desc_dqo(struct gve_tx_ring *tx,
uint32_t *desc_idx, uint32_t len, uint64_t addr,
int16_t compl_tag, bool eop, bool csum_enabled)
{
while (len > 0) {
struct gve_tx_pkt_desc_dqo *desc =
&tx->dqo.desc_ring[*desc_idx].pkt;
uint32_t cur_len = MIN(len, GVE_TX_MAX_BUF_SIZE_DQO);
bool cur_eop = eop && cur_len == len;
*desc = (struct gve_tx_pkt_desc_dqo){
.buf_addr = htole64(addr),
.dtype = GVE_TX_PKT_DESC_DTYPE_DQO,
.end_of_packet = cur_eop,
.checksum_offload_enable = csum_enabled,
.compl_tag = htole16(compl_tag),
.buf_size = cur_len,
};
addr += cur_len;
len -= cur_len;
*desc_idx = (*desc_idx + 1) & tx->dqo.desc_mask;
}
}
static void
gve_tx_fill_tso_ctx_desc(struct gve_tx_tso_context_desc_dqo *desc,
const struct mbuf *mbuf, const struct gve_tx_metadata_dqo *metadata,
int header_len)
{
*desc = (struct gve_tx_tso_context_desc_dqo){
.header_len = header_len,
.cmd_dtype = {
.dtype = GVE_TX_TSO_CTX_DESC_DTYPE_DQO,
.tso = 1,
},
.flex0 = metadata->bytes[0],
.flex5 = metadata->bytes[5],
.flex6 = metadata->bytes[6],
.flex7 = metadata->bytes[7],
.flex8 = metadata->bytes[8],
.flex9 = metadata->bytes[9],
.flex10 = metadata->bytes[10],
.flex11 = metadata->bytes[11],
};
desc->tso_total_len = mbuf->m_pkthdr.len - header_len;
desc->mss = mbuf->m_pkthdr.tso_segsz;
}
static void
gve_tx_fill_general_ctx_desc(struct gve_tx_general_context_desc_dqo *desc,
const struct gve_tx_metadata_dqo *metadata)
{
*desc = (struct gve_tx_general_context_desc_dqo){
.flex0 = metadata->bytes[0],
.flex1 = metadata->bytes[1],
.flex2 = metadata->bytes[2],
.flex3 = metadata->bytes[3],
.flex4 = metadata->bytes[4],
.flex5 = metadata->bytes[5],
.flex6 = metadata->bytes[6],
.flex7 = metadata->bytes[7],
.flex8 = metadata->bytes[8],
.flex9 = metadata->bytes[9],
.flex10 = metadata->bytes[10],
.flex11 = metadata->bytes[11],
.cmd_dtype = {.dtype = GVE_TX_GENERAL_CTX_DESC_DTYPE_DQO},
};
}
#define PULLUP_HDR(m, len) \
do { \
if (__predict_false((m)->m_len < (len))) { \
(m) = m_pullup((m), (len)); \
if ((m) == NULL) \
return (EINVAL); \
} \
} while (0)
static int
gve_prep_tso(struct mbuf *mbuf, int *header_len)
{
uint8_t l3_off, l4_off = 0;
struct ether_header *eh;
struct tcphdr *th;
u_short csum;
PULLUP_HDR(mbuf, sizeof(*eh));
eh = mtod(mbuf, struct ether_header *);
KASSERT(eh->ether_type != ETHERTYPE_VLAN,
("VLAN-tagged packets not supported"));
l3_off = ETHER_HDR_LEN;
#ifdef INET6
if (ntohs(eh->ether_type) == ETHERTYPE_IPV6) {
struct ip6_hdr *ip6;
PULLUP_HDR(mbuf, l3_off + sizeof(*ip6));
ip6 = (struct ip6_hdr *)(mtodo(mbuf, l3_off));
l4_off = l3_off + sizeof(struct ip6_hdr);
csum = in6_cksum_pseudo(ip6, /*len=*/0, IPPROTO_TCP,
/*csum=*/0);
} else
#endif
if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
struct ip *ip;
PULLUP_HDR(mbuf, l3_off + sizeof(*ip));
ip = (struct ip *)(mtodo(mbuf, l3_off));
l4_off = l3_off + (ip->ip_hl << 2);
csum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
htons(IPPROTO_TCP));
}
PULLUP_HDR(mbuf, l4_off + sizeof(struct tcphdr *));
th = (struct tcphdr *)(mtodo(mbuf, l4_off));
*header_len = l4_off + (th->th_off << 2);
/*
* Hardware requires the th->th_sum to not include the TCP payload,
* hence we recompute the csum with it excluded.
*/
th->th_sum = csum;
return (0);
}
static int
gve_tx_fill_ctx_descs(struct gve_tx_ring *tx, struct mbuf *mbuf,
bool is_tso, uint32_t *desc_idx)
{
struct gve_tx_general_context_desc_dqo *gen_desc;
struct gve_tx_tso_context_desc_dqo *tso_desc;
struct gve_tx_metadata_dqo metadata;
int header_len;
int err;
metadata = (struct gve_tx_metadata_dqo){0};
gve_extract_tx_metadata_dqo(mbuf, &metadata);
if (is_tso) {
err = gve_prep_tso(mbuf, &header_len);
if (__predict_false(err)) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_delayed_pkt_tsoerr, 1);
counter_exit();
return (err);
}
tso_desc = &tx->dqo.desc_ring[*desc_idx].tso_ctx;
gve_tx_fill_tso_ctx_desc(tso_desc, mbuf, &metadata, header_len);
*desc_idx = (*desc_idx + 1) & tx->dqo.desc_mask;
counter_enter();
counter_u64_add_protected(tx->stats.tso_packet_cnt, 1);
counter_exit();
}
gen_desc = &tx->dqo.desc_ring[*desc_idx].general_ctx;
gve_tx_fill_general_ctx_desc(gen_desc, &metadata);
*desc_idx = (*desc_idx + 1) & tx->dqo.desc_mask;
return (0);
}
static int
gve_map_mbuf_dqo(struct gve_tx_ring *tx,
struct mbuf **mbuf, bus_dmamap_t dmamap,
bus_dma_segment_t *segs, int *nsegs, int attempt)
{
struct mbuf *m_new = NULL;
int err;
err = bus_dmamap_load_mbuf_sg(tx->dqo.buf_dmatag, dmamap,
*mbuf, segs, nsegs, BUS_DMA_NOWAIT);
switch (err) {
case __predict_true(0):
break;
case EFBIG:
if (__predict_false(attempt > 0))
goto abort;
counter_enter();
counter_u64_add_protected(
tx->stats.tx_mbuf_collapse, 1);
counter_exit();
/* Try m_collapse before m_defrag */
m_new = m_collapse(*mbuf, M_NOWAIT,
GVE_TX_MAX_DATA_DESCS_DQO);
if (m_new == NULL) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_mbuf_defrag, 1);
counter_exit();
m_new = m_defrag(*mbuf, M_NOWAIT);
}
if (__predict_false(m_new == NULL)) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_mbuf_defrag_err, 1);
counter_exit();
m_freem(*mbuf);
*mbuf = NULL;
err = ENOMEM;
goto abort;
} else {
*mbuf = m_new;
return (gve_map_mbuf_dqo(tx, mbuf, dmamap,
segs, nsegs, ++attempt));
}
case ENOMEM:
counter_enter();
counter_u64_add_protected(
tx->stats.tx_mbuf_dmamap_enomem_err, 1);
counter_exit();
goto abort;
default:
goto abort;
}
return (0);
abort:
counter_enter();
counter_u64_add_protected(tx->stats.tx_mbuf_dmamap_err, 1);
counter_exit();
return (err);
}
static uint32_t
num_avail_desc_ring_slots(const struct gve_tx_ring *tx)
{
uint32_t num_used = (tx->dqo.desc_tail - tx->dqo.desc_head) &
tx->dqo.desc_mask;
return (tx->dqo.desc_mask - num_used);
}
static struct gve_tx_pending_pkt_dqo *
gve_alloc_pending_packet(struct gve_tx_ring *tx)
{
int32_t index = tx->dqo.free_pending_pkts_csm;
struct gve_tx_pending_pkt_dqo *pending_pkt;
/*
* No pending packets available in the consumer list,
* try to steal the producer list.
*/
if (__predict_false(index == -1)) {
tx->dqo.free_pending_pkts_csm = atomic_swap_32(
&tx->dqo.free_pending_pkts_prd, -1);
index = tx->dqo.free_pending_pkts_csm;
if (__predict_false(index == -1))
return (NULL);
}
pending_pkt = &tx->dqo.pending_pkts[index];
/* Remove pending_pkt from the consumer list */
tx->dqo.free_pending_pkts_csm = pending_pkt->next;
pending_pkt->state = GVE_PACKET_STATE_PENDING_DATA_COMPL;
return (pending_pkt);
}
static void
gve_free_pending_packet(struct gve_tx_ring *tx,
struct gve_tx_pending_pkt_dqo *pending_pkt)
{
int index = pending_pkt - tx->dqo.pending_pkts;
int32_t old_head;
pending_pkt->state = GVE_PACKET_STATE_FREE;
/* Add pending_pkt to the producer list */
while (true) {
old_head = atomic_load_acq_32(&tx->dqo.free_pending_pkts_prd);
pending_pkt->next = old_head;
if (atomic_cmpset_32(&tx->dqo.free_pending_pkts_prd,
old_head, index))
break;
}
}
/*
* Has the side-effect of retrieving the value of the last desc index
* processed by the NIC. hw_tx_head is written to by the completions-processing
* taskqueue upon receiving descriptor-completions.
*/
static bool
gve_tx_has_desc_room_dqo(struct gve_tx_ring *tx, int needed_descs)
{
if (needed_descs <= num_avail_desc_ring_slots(tx))
return (true);
tx->dqo.desc_head = atomic_load_acq_32(&tx->dqo.hw_tx_head);
if (needed_descs > num_avail_desc_ring_slots(tx)) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_delayed_pkt_nospace_descring, 1);
counter_exit();
return (false);
}
return (0);
}
static void
gve_tx_request_desc_compl(struct gve_tx_ring *tx, uint32_t desc_idx)
{
uint32_t last_report_event_interval;
uint32_t last_desc_idx;
last_desc_idx = (desc_idx - 1) & tx->dqo.desc_mask;
last_report_event_interval =
(last_desc_idx - tx->dqo.last_re_idx) & tx->dqo.desc_mask;
if (__predict_false(last_report_event_interval >=
GVE_TX_MIN_RE_INTERVAL)) {
tx->dqo.desc_ring[last_desc_idx].pkt.report_event = true;
tx->dqo.last_re_idx = last_desc_idx;
}
}
static bool
gve_tx_have_enough_qpl_bufs(struct gve_tx_ring *tx, int num_bufs)
{
uint32_t available = tx->dqo.qpl_bufs_produced_cached -
tx->dqo.qpl_bufs_consumed;
if (__predict_true(available >= num_bufs))
return (true);
tx->dqo.qpl_bufs_produced_cached = atomic_load_acq_32(
&tx->dqo.qpl_bufs_produced);
available = tx->dqo.qpl_bufs_produced_cached -
tx->dqo.qpl_bufs_consumed;
if (__predict_true(available >= num_bufs))
return (true);
return (false);
}
static int32_t
gve_tx_alloc_qpl_buf(struct gve_tx_ring *tx)
{
int32_t buf = tx->dqo.free_qpl_bufs_csm;
if (__predict_false(buf == -1)) {
tx->dqo.free_qpl_bufs_csm = atomic_swap_32(
&tx->dqo.free_qpl_bufs_prd, -1);
buf = tx->dqo.free_qpl_bufs_csm;
if (__predict_false(buf == -1))
return (-1);
}
tx->dqo.free_qpl_bufs_csm = tx->dqo.qpl_bufs[buf];
tx->dqo.qpl_bufs_consumed++;
return (buf);
}
/*
* Tx buffer i corresponds to
* qpl_page_id = i / GVE_TX_BUFS_PER_PAGE_DQO
* qpl_page_offset = (i % GVE_TX_BUFS_PER_PAGE_DQO) * GVE_TX_BUF_SIZE_DQO
*/
static void
gve_tx_buf_get_addr_dqo(struct gve_tx_ring *tx,
int32_t index, void **va, bus_addr_t *dma_addr)
{
int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
int offset = (index & (GVE_TX_BUFS_PER_PAGE_DQO - 1)) <<
GVE_TX_BUF_SHIFT_DQO;
*va = (char *)tx->com.qpl->dmas[page_id].cpu_addr + offset;
*dma_addr = tx->com.qpl->dmas[page_id].bus_addr + offset;
}
static struct gve_dma_handle *
gve_get_page_dma_handle(struct gve_tx_ring *tx, int32_t index)
{
int page_id = index >> (PAGE_SHIFT - GVE_TX_BUF_SHIFT_DQO);
return (&tx->com.qpl->dmas[page_id]);
}
static void
gve_tx_copy_mbuf_and_write_pkt_descs(struct gve_tx_ring *tx,
struct mbuf *mbuf, struct gve_tx_pending_pkt_dqo *pkt,
bool csum_enabled, int16_t completion_tag,
uint32_t *desc_idx)
{
int32_t pkt_len = mbuf->m_pkthdr.len;
struct gve_dma_handle *dma;
uint32_t copy_offset = 0;
int32_t prev_buf = -1;
uint32_t copy_len;
bus_addr_t addr;
int32_t buf;
void *va;
MPASS(pkt->num_qpl_bufs == 0);
MPASS(pkt->qpl_buf_head == -1);
while (copy_offset < pkt_len) {
buf = gve_tx_alloc_qpl_buf(tx);
/* We already checked for availability */
MPASS(buf != -1);
gve_tx_buf_get_addr_dqo(tx, buf, &va, &addr);
copy_len = MIN(GVE_TX_BUF_SIZE_DQO, pkt_len - copy_offset);
m_copydata(mbuf, copy_offset, copy_len, va);
copy_offset += copy_len;
dma = gve_get_page_dma_handle(tx, buf);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
gve_tx_fill_pkt_desc_dqo(tx, desc_idx,
copy_len, addr, completion_tag,
/*eop=*/copy_offset == pkt_len,
csum_enabled);
/* Link all the qpl bufs for a packet */
if (prev_buf == -1)
pkt->qpl_buf_head = buf;
else
tx->dqo.qpl_bufs[prev_buf] = buf;
prev_buf = buf;
pkt->num_qpl_bufs++;
}
tx->dqo.qpl_bufs[buf] = -1;
}
int
gve_xmit_dqo_qpl(struct gve_tx_ring *tx, struct mbuf *mbuf)
{
uint32_t desc_idx = tx->dqo.desc_tail;
struct gve_tx_pending_pkt_dqo *pkt;
int total_descs_needed;
int16_t completion_tag;
bool has_csum_flag;
int csum_flags;
bool is_tso;
int nsegs;
int err;
csum_flags = mbuf->m_pkthdr.csum_flags;
has_csum_flag = csum_flags & (CSUM_TCP | CSUM_UDP |
CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_TSO);
is_tso = csum_flags & CSUM_TSO;
nsegs = howmany(mbuf->m_pkthdr.len, GVE_TX_BUF_SIZE_DQO);
/* Check if we have enough room in the desc ring */
total_descs_needed = 1 + /* general_ctx_desc */
nsegs + /* pkt_desc */
(is_tso ? 1 : 0); /* tso_ctx_desc */
if (__predict_false(!gve_tx_has_desc_room_dqo(tx, total_descs_needed)))
return (ENOBUFS);
if (!gve_tx_have_enough_qpl_bufs(tx, nsegs)) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_delayed_pkt_nospace_qpl_bufs, 1);
counter_exit();
return (ENOBUFS);
}
pkt = gve_alloc_pending_packet(tx);
if (pkt == NULL) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_delayed_pkt_nospace_compring, 1);
counter_exit();
return (ENOBUFS);
}
completion_tag = pkt - tx->dqo.pending_pkts;
pkt->mbuf = mbuf;
err = gve_tx_fill_ctx_descs(tx, mbuf, is_tso, &desc_idx);
if (err)
goto abort;
gve_tx_copy_mbuf_and_write_pkt_descs(tx, mbuf, pkt,
has_csum_flag, completion_tag, &desc_idx);
/* Remember the index of the last desc written */
tx->dqo.desc_tail = desc_idx;
/*
* Request a descriptor completion on the last descriptor of the
* packet if we are allowed to by the HW enforced interval.
*/
gve_tx_request_desc_compl(tx, desc_idx);
tx->req += total_descs_needed; /* tx->req is just a sysctl counter */
return (0);
abort:
pkt->mbuf = NULL;
gve_free_pending_packet(tx, pkt);
return (err);
}
int
gve_xmit_dqo(struct gve_tx_ring *tx, struct mbuf **mbuf_ptr)
{
bus_dma_segment_t segs[GVE_TX_MAX_DATA_DESCS_DQO];
uint32_t desc_idx = tx->dqo.desc_tail;
struct gve_tx_pending_pkt_dqo *pkt;
struct mbuf *mbuf = *mbuf_ptr;
int total_descs_needed;
int16_t completion_tag;
bool has_csum_flag;
int csum_flags;
bool is_tso;
int nsegs;
int err;
int i;
csum_flags = mbuf->m_pkthdr.csum_flags;
has_csum_flag = csum_flags & (CSUM_TCP | CSUM_UDP |
CSUM_IP6_TCP | CSUM_IP6_UDP | CSUM_TSO);
is_tso = csum_flags & CSUM_TSO;
/*
* This mbuf might end up needing more than 1 pkt desc.
* The actual number, `nsegs` is known only after the
* expensive gve_map_mbuf_dqo call. This check beneath
* exists to fail early when the desc ring is really full.
*/
total_descs_needed = 1 + /* general_ctx_desc */
1 + /* pkt_desc */
(is_tso ? 1 : 0); /* tso_ctx_desc */
if (__predict_false(!gve_tx_has_desc_room_dqo(tx, total_descs_needed)))
return (ENOBUFS);
pkt = gve_alloc_pending_packet(tx);
if (pkt == NULL) {
counter_enter();
counter_u64_add_protected(
tx->stats.tx_delayed_pkt_nospace_compring, 1);
counter_exit();
return (ENOBUFS);
}
completion_tag = pkt - tx->dqo.pending_pkts;
err = gve_map_mbuf_dqo(tx, mbuf_ptr, pkt->dmamap,
segs, &nsegs, /*attempt=*/0);
if (err)
goto abort;
mbuf = *mbuf_ptr; /* gve_map_mbuf_dqo might replace the mbuf chain */
pkt->mbuf = mbuf;
total_descs_needed = 1 + /* general_ctx_desc */
nsegs + /* pkt_desc */
(is_tso ? 1 : 0); /* tso_ctx_desc */
if (__predict_false(
!gve_tx_has_desc_room_dqo(tx, total_descs_needed))) {
err = ENOBUFS;
goto abort_with_dma;
}
err = gve_tx_fill_ctx_descs(tx, mbuf, is_tso, &desc_idx);
if (err)
goto abort_with_dma;
bus_dmamap_sync(tx->dqo.buf_dmatag, pkt->dmamap, BUS_DMASYNC_PREWRITE);
for (i = 0; i < nsegs; i++) {
gve_tx_fill_pkt_desc_dqo(tx, &desc_idx,
segs[i].ds_len, segs[i].ds_addr,
completion_tag, /*eop=*/i == (nsegs - 1),
has_csum_flag);
}
/* Remember the index of the last desc written */
tx->dqo.desc_tail = desc_idx;
/*
* Request a descriptor completion on the last descriptor of the
* packet if we are allowed to by the HW enforced interval.
*/
gve_tx_request_desc_compl(tx, desc_idx);
tx->req += total_descs_needed; /* tx->req is just a sysctl counter */
return (0);
abort_with_dma:
gve_unmap_packet(tx, pkt);
abort:
pkt->mbuf = NULL;
gve_free_pending_packet(tx, pkt);
return (err);
}
static void
gve_reap_qpl_bufs_dqo(struct gve_tx_ring *tx,
struct gve_tx_pending_pkt_dqo *pkt)
{
int32_t buf = pkt->qpl_buf_head;
struct gve_dma_handle *dma;
int32_t qpl_buf_tail;
int32_t old_head;
int i;
for (i = 0; i < pkt->num_qpl_bufs; i++) {
dma = gve_get_page_dma_handle(tx, buf);
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTWRITE);
qpl_buf_tail = buf;
buf = tx->dqo.qpl_bufs[buf];
}
MPASS(buf == -1);
buf = qpl_buf_tail;
while (true) {
old_head = atomic_load_32(&tx->dqo.free_qpl_bufs_prd);
tx->dqo.qpl_bufs[buf] = old_head;
/*
* The "rel" ensures that the update to dqo.free_qpl_bufs_prd
* is visible only after the linked list from this pkt is
* attached above to old_head.
*/
if (atomic_cmpset_rel_32(&tx->dqo.free_qpl_bufs_prd,
old_head, pkt->qpl_buf_head))
break;
}
/*
* The "rel" ensures that the update to dqo.qpl_bufs_produced is
* visible only adter the update to dqo.free_qpl_bufs_prd above.
*/
atomic_add_rel_32(&tx->dqo.qpl_bufs_produced, pkt->num_qpl_bufs);
gve_clear_qpl_pending_pkt(pkt);
}
static uint64_t
gve_handle_packet_completion(struct gve_priv *priv,
struct gve_tx_ring *tx, uint16_t compl_tag)
{
struct gve_tx_pending_pkt_dqo *pending_pkt;
int32_t pkt_len;
if (__predict_false(compl_tag >= tx->dqo.num_pending_pkts)) {
device_printf(priv->dev, "Invalid TX completion tag: %d\n",
compl_tag);
return (0);
}
pending_pkt = &tx->dqo.pending_pkts[compl_tag];
/* Packet is allocated but not pending data completion. */
if (__predict_false(pending_pkt->state !=
GVE_PACKET_STATE_PENDING_DATA_COMPL)) {
device_printf(priv->dev,
"No pending data completion: %d\n", compl_tag);
return (0);
}
pkt_len = pending_pkt->mbuf->m_pkthdr.len;
if (gve_is_qpl(priv))
gve_reap_qpl_bufs_dqo(tx, pending_pkt);
else
gve_unmap_packet(tx, pending_pkt);
m_freem(pending_pkt->mbuf);
pending_pkt->mbuf = NULL;
gve_free_pending_packet(tx, pending_pkt);
return (pkt_len);
}
int
gve_tx_intr_dqo(void *arg)
{
struct gve_tx_ring *tx = arg;
struct gve_priv *priv = tx->com.priv;
struct gve_ring_com *com = &tx->com;
if (__predict_false((if_getdrvflags(priv->ifp) & IFF_DRV_RUNNING) == 0))
return (FILTER_STRAY);
/* Interrupts are automatically masked */
taskqueue_enqueue(com->cleanup_tq, &com->cleanup_task);
return (FILTER_HANDLED);
}
static void
gve_tx_clear_desc_ring_dqo(struct gve_tx_ring *tx)
{
struct gve_ring_com *com = &tx->com;
int i;
for (i = 0; i < com->priv->tx_desc_cnt; i++)
tx->dqo.desc_ring[i] = (union gve_tx_desc_dqo){};
bus_dmamap_sync(tx->desc_ring_mem.tag, tx->desc_ring_mem.map,
BUS_DMASYNC_PREWRITE);
}
static void
gve_tx_clear_compl_ring_dqo(struct gve_tx_ring *tx)
{
struct gve_ring_com *com = &tx->com;
int entries;
int i;
entries = com->priv->tx_desc_cnt;
for (i = 0; i < entries; i++)
tx->dqo.compl_ring[i] = (struct gve_tx_compl_desc_dqo){};
bus_dmamap_sync(tx->dqo.compl_ring_mem.tag, tx->dqo.compl_ring_mem.map,
BUS_DMASYNC_PREWRITE);
}
void
gve_clear_tx_ring_dqo(struct gve_priv *priv, int i)
{
struct gve_tx_ring *tx = &priv->tx[i];
int j;
tx->dqo.desc_head = 0;
tx->dqo.desc_tail = 0;
tx->dqo.desc_mask = priv->tx_desc_cnt - 1;
tx->dqo.last_re_idx = 0;
tx->dqo.compl_head = 0;
tx->dqo.compl_mask = priv->tx_desc_cnt - 1;
atomic_store_32(&tx->dqo.hw_tx_head, 0);
tx->dqo.cur_gen_bit = 0;
gve_free_tx_mbufs_dqo(tx);
for (j = 0; j < tx->dqo.num_pending_pkts; j++) {
if (gve_is_qpl(tx->com.priv))
gve_clear_qpl_pending_pkt(&tx->dqo.pending_pkts[j]);
tx->dqo.pending_pkts[j].next =
(j == tx->dqo.num_pending_pkts - 1) ? -1 : j + 1;
tx->dqo.pending_pkts[j].state = GVE_PACKET_STATE_FREE;
}
tx->dqo.free_pending_pkts_csm = 0;
atomic_store_rel_32(&tx->dqo.free_pending_pkts_prd, -1);
if (gve_is_qpl(priv)) {
int qpl_buf_cnt = GVE_TX_BUFS_PER_PAGE_DQO *
tx->com.qpl->num_pages;
for (j = 0; j < qpl_buf_cnt - 1; j++)
tx->dqo.qpl_bufs[j] = j + 1;
tx->dqo.qpl_bufs[j] = -1;
tx->dqo.free_qpl_bufs_csm = 0;
atomic_store_32(&tx->dqo.free_qpl_bufs_prd, -1);
atomic_store_32(&tx->dqo.qpl_bufs_produced, qpl_buf_cnt);
tx->dqo.qpl_bufs_produced_cached = qpl_buf_cnt;
tx->dqo.qpl_bufs_consumed = 0;
}
gve_tx_clear_desc_ring_dqo(tx);
gve_tx_clear_compl_ring_dqo(tx);
}
static bool
gve_tx_cleanup_dqo(struct gve_priv *priv, struct gve_tx_ring *tx, int budget)
{
struct gve_tx_compl_desc_dqo *compl_desc;
uint64_t bytes_done = 0;
uint64_t pkts_done = 0;
uint16_t compl_tag;
int work_done = 0;
uint16_t tx_head;
uint16_t type;
while (work_done < budget) {
bus_dmamap_sync(tx->dqo.compl_ring_mem.tag, tx->dqo.compl_ring_mem.map,
BUS_DMASYNC_POSTREAD);
compl_desc = &tx->dqo.compl_ring[tx->dqo.compl_head];
if (compl_desc->generation == tx->dqo.cur_gen_bit)
break;
/*
* Prevent generation bit from being read after the rest of the
* descriptor.
*/
atomic_thread_fence_acq();
type = compl_desc->type;
if (type == GVE_COMPL_TYPE_DQO_DESC) {
/* This is the last descriptor fetched by HW plus one */
tx_head = le16toh(compl_desc->tx_head);
atomic_store_rel_32(&tx->dqo.hw_tx_head, tx_head);
} else if (type == GVE_COMPL_TYPE_DQO_PKT) {
compl_tag = le16toh(compl_desc->completion_tag);
bytes_done += gve_handle_packet_completion(priv,
tx, compl_tag);
pkts_done++;
}
tx->dqo.compl_head = (tx->dqo.compl_head + 1) &
tx->dqo.compl_mask;
/* Flip the generation bit when we wrap around */
tx->dqo.cur_gen_bit ^= tx->dqo.compl_head == 0;
work_done++;
}
/*
* Waking the xmit taskqueue has to occur after room has been made in
* the queue.
*/
atomic_thread_fence_seq_cst();
if (atomic_load_bool(&tx->stopped) && work_done) {
atomic_store_bool(&tx->stopped, false);
taskqueue_enqueue(tx->xmit_tq, &tx->xmit_task);
}
tx->done += work_done; /* tx->done is just a sysctl counter */
counter_enter();
counter_u64_add_protected(tx->stats.tbytes, bytes_done);
counter_u64_add_protected(tx->stats.tpackets, pkts_done);
counter_exit();
return (work_done == budget);
}
void
gve_tx_cleanup_tq_dqo(void *arg, int pending)
{
struct gve_tx_ring *tx = arg;
struct gve_priv *priv = tx->com.priv;
if (__predict_false((if_getdrvflags(priv->ifp) & IFF_DRV_RUNNING) == 0))
return;
if (gve_tx_cleanup_dqo(priv, tx, /*budget=*/1024)) {
taskqueue_enqueue(tx->com.cleanup_tq, &tx->com.cleanup_task);
return;
}
gve_db_bar_dqo_write_4(priv, tx->com.irq_db_offset,
GVE_ITR_NO_UPDATE_DQO | GVE_ITR_ENABLE_BIT_DQO);
}