gve_utils.c (338 lines of code) (raw):
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2023-2024 Google LLC
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "gve.h"
#include "gve_dqo.h"
uint32_t
gve_reg_bar_read_4(struct gve_priv *priv, bus_size_t offset)
{
return (be32toh(bus_read_4(priv->reg_bar, offset)));
}
void
gve_reg_bar_write_4(struct gve_priv *priv, bus_size_t offset, uint32_t val)
{
bus_write_4(priv->reg_bar, offset, htobe32(val));
}
void
gve_db_bar_write_4(struct gve_priv *priv, bus_size_t offset, uint32_t val)
{
bus_write_4(priv->db_bar, offset, htobe32(val));
}
void
gve_db_bar_dqo_write_4(struct gve_priv *priv, bus_size_t offset, uint32_t val)
{
bus_write_4(priv->db_bar, offset, val);
}
void
gve_alloc_counters(counter_u64_t *stat, int num_stats)
{
int i;
for (i = 0; i < num_stats; i++)
stat[i] = counter_u64_alloc(M_WAITOK);
}
void
gve_free_counters(counter_u64_t *stat, int num_stats)
{
int i;
for (i = 0; i < num_stats; i++)
counter_u64_free(stat[i]);
}
/* Currently assumes a single segment. */
static void
gve_dmamap_load_callback(void *arg, bus_dma_segment_t *segs, int nseg,
int error)
{
if (error == 0)
*(bus_addr_t *) arg = segs[0].ds_addr;
}
int
gve_dma_alloc_coherent(struct gve_priv *priv, int size, int align,
struct gve_dma_handle *dma)
{
int err;
device_t dev = priv->dev;
err = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
align, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dma->tag);
if (err != 0) {
device_printf(dev, "%s: bus_dma_tag_create failed: %d\n",
__func__, err);
goto clear_tag;
}
err = bus_dmamem_alloc(dma->tag, (void **) &dma->cpu_addr,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&dma->map);
if (err != 0) {
device_printf(dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n",
__func__, (uintmax_t)size, err);
goto destroy_tag;
}
/* An address set by the callback will never be -1 */
dma->bus_addr = (bus_addr_t)-1;
err = bus_dmamap_load(dma->tag, dma->map, dma->cpu_addr, size,
gve_dmamap_load_callback, &dma->bus_addr, BUS_DMA_NOWAIT);
if (err != 0 || dma->bus_addr == (bus_addr_t)-1) {
device_printf(dev, "%s: bus_dmamap_load failed: %d\n", __func__, err);
goto free_mem;
}
return (0);
free_mem:
bus_dmamem_free(dma->tag, dma->cpu_addr, dma->map);
destroy_tag:
bus_dma_tag_destroy(dma->tag);
clear_tag:
dma->tag = NULL;
return (err);
}
void
gve_dma_free_coherent(struct gve_dma_handle *dma)
{
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_free(dma->tag, dma->cpu_addr, dma->map);
bus_dma_tag_destroy(dma->tag);
}
int
gve_dmamap_create(struct gve_priv *priv, int size, int align,
struct gve_dma_handle *dma)
{
int err;
device_t dev = priv->dev;
err = bus_dma_tag_create(
bus_get_dma_tag(dev), /* parent */
align, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
size, /* maxsize */
1, /* nsegments */
size, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&dma->tag);
if (err != 0) {
device_printf(dev, "%s: bus_dma_tag_create failed: %d\n",
__func__, err);
goto clear_tag;
}
err = bus_dmamap_create(dma->tag, BUS_DMA_COHERENT, &dma->map);
if (err != 0) {
device_printf(dev, "%s: bus_dmamap_create failed: %d\n",
__func__, err);
goto destroy_tag;
}
/* An address set by the callback will never be -1 */
dma->bus_addr = (bus_addr_t)-1;
err = bus_dmamap_load(dma->tag, dma->map, dma->cpu_addr, size,
gve_dmamap_load_callback, &dma->bus_addr, BUS_DMA_WAITOK);
if (err != 0 || dma->bus_addr == (bus_addr_t)-1) {
device_printf(dev, "%s: bus_dmamap_load failed: %d\n",
__func__, err);
goto destroy_map;
}
return (0);
destroy_map:
bus_dmamap_destroy(dma->tag, dma->map);
destroy_tag:
bus_dma_tag_destroy(dma->tag);
clear_tag:
dma->tag = NULL;
return (err);
}
void
gve_dmamap_destroy(struct gve_dma_handle *dma)
{
bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamap_destroy(dma->tag, dma->map);
bus_dma_tag_destroy(dma->tag);
}
static int
gve_mgmnt_intr(void *arg)
{
struct gve_priv *priv = arg;
taskqueue_enqueue(priv->service_tq, &priv->service_task);
return (FILTER_HANDLED);
}
void
gve_free_irqs(struct gve_priv *priv)
{
struct gve_irq *irq;
int num_irqs;
int rid;
int rc;
int i;
if (priv->irq_tbl == NULL) {
device_printf(priv->dev, "No irq table, nothing to free\n");
return;
}
num_irqs = priv->tx_cfg.max_queues + priv->rx_cfg.max_queues + 1;
for (i = 0; i < num_irqs; i++) {
irq = &priv->irq_tbl[i];
if (irq->res == NULL)
continue;
rid = rman_get_rid(irq->res);
rc = bus_teardown_intr(priv->dev, irq->res, irq->cookie);
if (rc != 0)
device_printf(priv->dev, "Failed to teardown irq num %d\n",
rid);
rc = bus_release_resource(priv->dev, SYS_RES_IRQ,
rid, irq->res);
if (rc != 0)
device_printf(priv->dev, "Failed to release irq num %d\n",
rid);
irq->res = NULL;
irq->cookie = NULL;
}
free(priv->irq_tbl, M_GVE);
priv->irq_tbl = NULL;
/* Safe to call even if msix was never alloced */
pci_release_msi(priv->dev);
}
int
gve_alloc_irqs(struct gve_priv *priv)
{
int num_tx = priv->tx_cfg.max_queues;
int num_rx = priv->rx_cfg.max_queues;
int req_nvecs = num_tx + num_rx + 1;
int got_nvecs = req_nvecs;
struct gve_irq *irq;
int i, j, m;
int rid;
int err;
struct gve_ring_com *com;
struct gve_rx_ring *rx;
struct gve_tx_ring *tx;
if (pci_alloc_msix(priv->dev, &got_nvecs) != 0) {
device_printf(priv->dev, "Failed to acquire any msix vectors\n");
err = ENXIO;
goto abort;
} else if (got_nvecs != req_nvecs) {
device_printf(priv->dev, "Tried to acquire %d msix vectors, got only %d\n",
req_nvecs, got_nvecs);
err = ENOSPC;
goto abort;
}
if (bootverbose)
device_printf(priv->dev, "Enabled MSIX with %d vectors\n", got_nvecs);
priv->irq_tbl = malloc(sizeof(struct gve_irq) * req_nvecs, M_GVE,
M_WAITOK | M_ZERO);
for (i = 0; i < num_tx; i++) {
irq = &priv->irq_tbl[i];
tx = &priv->tx[i];
com = &tx->com;
rid = i + 1;
irq->res = bus_alloc_resource_any(priv->dev, SYS_RES_IRQ,
&rid, RF_ACTIVE);
if (irq->res == NULL) {
device_printf(priv->dev, "Failed to alloc irq %d for Tx queue %d\n",
rid, i);
err = ENOMEM;
goto abort;
}
err = bus_setup_intr(priv->dev, irq->res, INTR_TYPE_NET | INTR_MPSAFE,
gve_is_gqi(priv) ? gve_tx_intr : gve_tx_intr_dqo, NULL,
&priv->tx[i], &irq->cookie);
if (err != 0) {
device_printf(priv->dev, "Failed to setup irq %d for Tx queue %d, "
"err: %d\n", rid, i, err);
goto abort;
}
bus_describe_intr(priv->dev, irq->res, irq->cookie, "tx%d", i);
com->ntfy_id = i;
}
for (j = 0; j < num_rx; j++) {
irq = &priv->irq_tbl[i + j];
rx = &priv->rx[j];
com = &rx->com;
rid = i + j + 1;
irq->res = bus_alloc_resource_any(priv->dev, SYS_RES_IRQ,
&rid, RF_ACTIVE);
if (irq->res == NULL) {
device_printf(priv->dev,
"Failed to alloc irq %d for Rx queue %d", rid, j);
err = ENOMEM;
goto abort;
}
err = bus_setup_intr(priv->dev, irq->res, INTR_TYPE_NET | INTR_MPSAFE,
gve_is_gqi(priv) ? gve_rx_intr : gve_rx_intr_dqo, NULL,
&priv->rx[j], &irq->cookie);
if (err != 0) {
device_printf(priv->dev, "Failed to setup irq %d for Rx queue %d, "
"err: %d\n", rid, j, err);
goto abort;
}
bus_describe_intr(priv->dev, irq->res, irq->cookie, "rx%d", j);
com->ntfy_id = i + j;
}
m = i + j;
rid = m + 1;
irq = &priv->irq_tbl[m];
irq->res = bus_alloc_resource_any(priv->dev, SYS_RES_IRQ,
&rid, RF_ACTIVE);
if (irq->res == NULL) {
device_printf(priv->dev, "Failed to allocate irq %d for mgmnt queue\n", rid);
err = ENOMEM;
goto abort;
}
err = bus_setup_intr(priv->dev, irq->res, INTR_TYPE_NET | INTR_MPSAFE,
gve_mgmnt_intr, NULL, priv, &irq->cookie);
if (err != 0) {
device_printf(priv->dev, "Failed to setup irq %d for mgmnt queue, err: %d\n",
rid, err);
goto abort;
}
bus_describe_intr(priv->dev, irq->res, irq->cookie, "mgmnt");
return (0);
abort:
gve_free_irqs(priv);
return (err);
}
/*
* Builds register value to write to DQO IRQ doorbell to enable with specified
* ITR interval.
*/
static uint32_t
gve_setup_itr_interval_dqo(uint32_t interval_us)
{
uint32_t result = GVE_ITR_ENABLE_BIT_DQO;
/* Interval has 2us granularity. */
interval_us >>= 1;
interval_us &= GVE_ITR_INTERVAL_DQO_MASK;
result |= (interval_us << GVE_ITR_INTERVAL_DQO_SHIFT);
return (result);
}
void
gve_unmask_all_queue_irqs(struct gve_priv *priv)
{
struct gve_tx_ring *tx;
struct gve_rx_ring *rx;
int idx;
for (idx = 0; idx < priv->tx_cfg.num_queues; idx++) {
tx = &priv->tx[idx];
if (gve_is_gqi(priv))
gve_db_bar_write_4(priv, tx->com.irq_db_offset, 0);
else
gve_db_bar_dqo_write_4(priv, tx->com.irq_db_offset,
gve_setup_itr_interval_dqo(GVE_TX_IRQ_RATELIMIT_US_DQO));
}
for (idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
rx = &priv->rx[idx];
if (gve_is_gqi(priv))
gve_db_bar_write_4(priv, rx->com.irq_db_offset, 0);
else
gve_db_bar_dqo_write_4(priv, rx->com.irq_db_offset,
gve_setup_itr_interval_dqo(GVE_RX_IRQ_RATELIMIT_US_DQO));
}
}
void
gve_mask_all_queue_irqs(struct gve_priv *priv)
{
for (int idx = 0; idx < priv->tx_cfg.num_queues; idx++) {
struct gve_tx_ring *tx = &priv->tx[idx];
gve_db_bar_write_4(priv, tx->com.irq_db_offset, GVE_IRQ_MASK);
}
for (int idx = 0; idx < priv->rx_cfg.num_queues; idx++) {
struct gve_rx_ring *rx = &priv->rx[idx];
gve_db_bar_write_4(priv, rx->com.irq_db_offset, GVE_IRQ_MASK);
}
}