def main()

in src/marketing/src/Meta/src/cdc/deploy_cdc_layer.py [0:0]


def main():
    """Main function placeholder."""

    debug = _parse_debug(sys.argv[1:])
    logging.basicConfig(level=logging.DEBUG if debug else logging.INFO)

    logging.info("Deploying CDC layer...")
    logging.info(
        "\n---------------------------------------\n"
        "Using the following parameters from config:\n"
        "  RAW_PROJECT = %s\n"
        "  RAW_DATASET = %s\n"
        "  CDC_PROJECT = %s\n"
        "  CDC_DATASET = %s\n"
        "---------------------------------------\n", RAW_PROJECT, RAW_DATASET,
        CDC_PROJECT, CDC_DATASET)

    logging.info("Creating required directories for generated files...")

    _create_output_dir_structure()

    dag_start_date = datetime.now(timezone.utc).date()

    bq_client = cortex_bq_client.CortexBQClient(project=CDC_PROJECT)

    if not "raw_to_cdc_tables" in SETTINGS:
        logging.warning(
            "❗ File '%s' is missing property `raw_to_cdc_tables`. "
            "Skipping CDC DAG generation.", SETTINGS)
        sys.exit()

    cdc_layer_settings = SETTINGS.get("raw_to_cdc_tables")

    logging.info("Processing CDC tables...")
    for cdc_table_settings in cdc_layer_settings:
        # Making sure all required setting attributes are provided.
        missing_cdc_setting_attr = []
        for attr in ("base_table", "row_identifiers", "load_frequency"):
            if not cdc_table_settings.get(attr):
                missing_cdc_setting_attr.append(attr)
        if missing_cdc_setting_attr:
            raise ValueError(
                "Setting file is missing or has empty value for one or more "
                f"required attributes: {missing_cdc_setting_attr} ")

        table_name = cdc_table_settings.get("base_table")
        load_frequency = cdc_table_settings.get("load_frequency")
        row_identifiers = cdc_table_settings.get("row_identifiers")
        partition_details = cdc_table_settings.get("partition_details")
        cluster_details = cdc_table_settings.get("cluster_details")

        logging.info("Processing table %s", table_name)

        table_mapping_path = Path(SCHEMA_DIR, f"{table_name}.csv")
        full_table_name = f"{CDC_PROJECT}.{CDC_DATASET}.{table_name}"

        if table_exists(bq_client=bq_client, full_table_name=full_table_name):
            logging.warning("❗ Table already exists.")
        else:
            logging.info("Creating table %s...", full_table_name)

            schema = read_bq_schema(
                mapping_file=table_mapping_path,
                schema_target_field=SCHEMA_TARGET_FIELD,
                schema_bq_datatype_field=SCHEMA_BQ_DATATYPE_FIELD,
                system_fields=SYSTEM_FIELDS)

            create_table_from_schema(bq_client=bq_client,
                         full_table_name=full_table_name,
                         schema=schema,
                         partition_details=partition_details,
                         cluster_details=cluster_details)

            logging.info("Table %s processed successfully.", full_table_name)

        logging.info("Generating DAG Python file...")

        # DAG Python file generation.

        subs = {
            "sql_path": Path("cdc_sql_scripts", f"{table_name}.sql"),
            "project_id": CDC_PROJECT,
            "dataset": CDC_DATASET,
            "load_frequency": load_frequency,
            "table_name": table_name,
            "start_date": dag_start_date,
            "runtime_labels_dict": "", # A place holder for labels dict string
            "bq_location": PROJECT_LOCATION
        }

        # If telemetry opted in, convert CORTEX JOB LABEL dict to string
        # And assign to substitution
        if bq_client.allow_telemetry:
            subs["runtime_labels_dict"] = str(constants.CORTEX_JOB_LABEL)

        table_name_as_identifier = table_name.replace(".", "_")
        dag_py_file = (f"{CDC_PROJECT}_{CDC_DATASET}"
                       f"_raw_to_cdc_{table_name_as_identifier}.py")
        dag_py_path = Path(CDC_OUTPUT_DIR, dag_py_file)
        generate_file_from_template(DAG_TEMPLATE_PATH, dag_py_path, **subs)

        logging.info("Generated DAG Python file.")

        # DAG SQL file generation.
        logging.info("Generating DAG SQL file...")
        template_vals = {
            "source_project_id": RAW_PROJECT,
            "target_project_id": CDC_PROJECT,
            "row_identifiers": row_identifiers,
            "source_ds": RAW_DATASET,
            "target_ds": CDC_DATASET,
            "target_table": table_name,
            "source_table": table_name,
        }

        field_type_mapping = read_field_type_mapping(
                                    mapping_file = table_mapping_path,
                                    schema_target_field = SCHEMA_TARGET_FIELD,
                                    schema_bq_datatype_field =\
                                          SCHEMA_BQ_DATATYPE_FIELD,
                                    system_fields=SYSTEM_FIELDS)

        jinja_dict = template_vals | {
            "meta_field_type_mapping": field_type_mapping
        }

        sql_code = apply_jinja_params_dict_to_file(CDC_SQL_TEMPLATE_PATH,
                                                   jinja_dict)

        generated_sql_path = Path(CDC_SQL_OUTPUT_DIR, f"{table_name}.sql")

        # Writes generated SQL object to the given path.
        with open(generated_sql_path, "w", encoding="utf-8") as f:
            f.write(sql_code)

        logging.info("Generated DAG SQL file: %s", generated_sql_path)

        # Populates table with test data using generated SQL script.
        if POPULATE_TEST_DATA:
            logging.info("Populating table with test data...")
            populate_cdc_table_job = bq_client.query(query=sql_code)
            populate_cdc_table_job.result()
            logging.info("Test data populated.")

        logging.info("Table processed successfully.")
        logging.info("----------------------------")

    logging.info("Processed all tables successfully.")

    logging.info("Copying DAG config file...")

    shutil.copyfile(src=DAG_CONFIG_INI_INPUT_PATH,
                    dst=DAG_CONFIG_INI_OUTPUT_PATH)
    logging.info("DAG config file copied successfully.")

    logging.info("✅ CDC layer deployed successfully!")