colab-enterprise/rideshare_llm_step_01_customer_sentiment_analysis.ipynb (294 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "hmBT4GGX5Xd2"
},
"source": [
"# Determine the sentiment of customer review\n",
"1. Reset the data (optional)\n",
"2. Create a LLM prompt for the LLM model to determine the sentiment\n",
"3. Score the data in batches\n",
"4. Extract the text from the scored Json result"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "InTiZalrwUjD"
},
"source": [
"## Generate the prompts (Enriched Zone: customer_review)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "I2Vm5bES1wcM"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"-- OPTIONAL: Reset all the fields to null\n",
"-- If you need to reset you data back to fresh data run the stored procedure: CALL `${project_id}.${bigquery_rideshare_llm_curated_dataset}.sp_reset_demo`();\n",
"/*\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review` AS customer_review\n",
" SET llm_sentiment_prompt = NULL,\n",
" raw_sentiment_json = NULL,\n",
" review_sentiment = NULL\n",
" WHERE TRUE;\n",
"*/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pL3k7_jIwfMn"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"-- Create the LLM prompt to determine the sentiment of each review\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review` AS customer_review\n",
" SET llm_sentiment_prompt = CONCAT('For the given review classify the sentiment as Positive, Neutral or Negative.','\\n','Review: ',customer_review_text)\n",
" WHERE llm_sentiment_prompt IS NULL;"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "say5TbngwlmY"
},
"source": [
"## Score all items in batches\n",
"- Find all records that have not been scored\n",
"- Score in a batch (we can do up to 10,000)\n",
"- The LLM temperature, max_output_tokens, top_p and top_k parameters have been set (locked for a deterministic value)\n",
"- Repeat until done"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ge8WWnQmyMGY"
},
"outputs": [],
"source": [
"from google.cloud import bigquery\n",
"import pandas as pd\n",
"\n",
"client = bigquery.Client()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7xXZQtU20iWI"
},
"outputs": [],
"source": [
"# Process in batches\n",
"batch_size = 100\n",
"\n",
"# Set the parameters so we are more deterministic and less creative/random responses\n",
"llm_temperature = 1\n",
"llm_max_output_tokens = 50\n",
"llm_top_p = 0\n",
"llm_top_k = 1\n",
"\n",
"update_sql=\"\"\"\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review` AS customer_review\n",
" SET raw_sentiment_json = child.ml_generate_text_result\n",
" FROM (SELECT *\n",
" FROM ML.GENERATE_TEXT(MODEL`${project_id}.${bigquery_rideshare_llm_enriched_dataset}.gemini_model`,\n",
" (SELECT trip_id,\n",
" llm_sentiment_prompt AS prompt\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review`\n",
" WHERE (raw_sentiment_json IS NULL\n",
" OR\n",
" JSON_VALUE(raw_sentiment_json, '$.candidates[0].content.parts[0].text') IS NULL\n",
" )\n",
" AND customer_review_text IS NOT NULL\n",
" AND llm_sentiment_prompt IS NOT NULL\n",
" AND review_sentiment IS NULL\n",
" LIMIT {batch_size}),\n",
" STRUCT(\n",
" {llm_temperature} AS temperature,\n",
" {llm_max_output_tokens} AS max_output_tokens,\n",
" {llm_top_p} AS top_p,\n",
" {llm_top_k} AS top_k\n",
" ))\n",
" ) AS child\n",
"WHERE customer_review.trip_id = child.trip_id;\n",
" \"\"\".format(batch_size = batch_size,\n",
" llm_temperature = llm_temperature,\n",
" llm_max_output_tokens = llm_max_output_tokens,\n",
" llm_top_p = llm_top_p,\n",
" llm_top_k = llm_top_k)\n",
"\n",
"print(\"SQL: {update_sql}\".format(update_sql=update_sql))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "w_rkIbY7wpwg"
},
"outputs": [],
"source": [
"# Score while records remain\n",
"# Score in groups of batch_size records (we can do up to 10,000 at a time)\n",
"import time\n",
"\n",
"done = False\n",
"original_record_count = 0\n",
"displayed_first_sql = False\n",
"\n",
"while done == False:\n",
" # Get the count of records to score\n",
" sql = \"\"\"\n",
" SELECT COUNT(*) AS cnt\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review`\n",
" WHERE (raw_sentiment_json IS NULL\n",
" OR\n",
" JSON_VALUE(raw_sentiment_json, '$.candidates[0].content.parts[0].text') IS NULL\n",
" )\n",
" AND customer_review_text IS NOT NULL\n",
" AND llm_sentiment_prompt IS NOT NULL\n",
" AND review_sentiment IS NULL\n",
" \"\"\"\n",
"\n",
" df_record_count = client.query(sql).to_dataframe()\n",
" cnt = df_record_count['cnt'].head(1).item()\n",
" if displayed_first_sql == False:\n",
" original_record_count = cnt\n",
" displayed_first_sql = True\n",
"\n",
" print(\"Remaining records to process: \", cnt, \" out of\", original_record_count, \" batch_size: \", batch_size)\n",
"\n",
" if cnt == 0:\n",
" done = True\n",
" else:\n",
" # https://github.com/googleapis/python-bigquery/tree/master/samples\n",
" job_config = bigquery.QueryJobConfig(priority=bigquery.QueryPriority.INTERACTIVE)\n",
" query_job = client.query(update_sql, job_config=job_config)\n",
"\n",
" # Check on the progress by getting the job's updated state.\n",
" query_job = client.get_job(\n",
" query_job.job_id, location=query_job.location\n",
" )\n",
" print(\"Job {} is currently in state {}\".format(query_job.job_id, query_job.state))\n",
"\n",
" while query_job.state != \"DONE\":\n",
" time.sleep(5)\n",
" query_job = client.get_job(\n",
" query_job.job_id, location=query_job.location\n",
" )\n",
" print(\"Job {} is currently in state {}\".format(query_job.job_id, query_job.state))\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "snavNXz63Rd2"
},
"source": [
"## Parse the LLM results to get a rating\n",
"- Rating should be Positive, Neutral or Negative"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "z--dotG43ryD"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"SELECT trip_id, llm_sentiment_prompt, raw_sentiment_json\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review`\n",
" WHERE llm_sentiment_prompt IS NOT NULL\n",
" AND raw_sentiment_json IS NOT NULL\n",
" AND review_sentiment IS NULL\n",
"LIMIT 20;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "JE43nGB93XOC"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review` AS customer_review\n",
" SET review_sentiment = JSON_VALUE(raw_sentiment_json, '$.candidates[0].content.parts[0].text')\n",
" WHERE review_sentiment IS NULL\n",
" AND raw_sentiment_json IS NOT NULL\n",
";"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QrTAZu9235YU"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"SELECT trip_id, llm_sentiment_prompt, raw_sentiment_json, review_sentiment\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review`\n",
" WHERE review_sentiment IS NOT NULL\n",
" AND raw_sentiment_json IS NOT NULL\n",
"LIMIT 20;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HVfYUdGoZVZ3"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"SELECT review_sentiment, COUNT(*) AS cnt\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_review`\n",
" WHERE review_sentiment IS NOT NULL\n",
" AND raw_sentiment_json IS NOT NULL\n",
"GROUP BY 1;\n"
]
}
],
"metadata": {
"colab": {
"name": "BigQuery table",
"private_outputs": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}