colab-enterprise/rideshare_llm_step_07_customer_quantitative_analysis.ipynb (284 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "U8ddz--L2sjh"
},
"source": [
"# Create Customer Summary (Quantitative Analysis)\n",
"- This notebook take about 5 to 10 minutes to execute\n",
"- Extract quantitative data from the Trips data\n",
" - Does the customer only use the service certain days of the week?\n",
" - What time of day does the customer use the service (rush hour)?\n",
"- Create a LLM summary of the extracted data"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bJKcUh_-4VIP"
},
"source": [
"## Create Summary Prompt and run through LLM"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "5UTx68uxanLl"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"-- OPTIONAL: Reset all the fields to null\n",
"-- If you need to reset you data back to fresh data run the stored procedure: CALL `${project_id}.${bigquery_rideshare_llm_curated_dataset}.sp_reset_demo`();\n",
"\n",
"/*\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer`\n",
" SET customer_quantitative_analysis_prompt = NULL,\n",
" llm_customer_quantitative_analysis_json = NULL,\n",
" llm_customer_quantitative_analysis = NULL\n",
" WHERE TRUE;\n",
"*/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Rymol4B-4l0J"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"-- Create the LLM prompt\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer` AS customer\n",
" SET customer_quantitative_analysis_prompt =\n",
" CONCAT('Write a 2 to 3 sentence summary of the following attributes of a customer who uses a rideshare services. ',\n",
" CASE WHEN day_of_week = 'weekend-customer' THEN CONCAT('- ', customer.customer_name, ' uses the service on weekends.\\n')\n",
" WHEN day_of_week = 'weekday-customer' THEN CONCAT('- ', customer.customer_name, ' uses the service on weekdays.\\n')\n",
" ELSE CONCAT('- ', customer.customer_name ,' uses the rideshare service any day of the week.\\n')\n",
" END,\n",
"\n",
" CASE WHEN hour_of_day = 'night-hour-customer' THEN CONCAT('- ',customer.customer_name,' likes to use the service at night.\\n')\n",
" WHEN hour_of_day = 'rush-hour-customer' THEN CONCAT('- ',customer.customer_name,' likes to use the service during the morning and afternoon rush hours.\\n')\n",
" ELSE CONCAT('- ',customer.customer_name,' uses the rideshare service at any time of the day.\\n')\n",
" END\n",
" )\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer_quantitative_analysis` AS customer_quantitative_analysis\n",
"WHERE customer.customer_id = customer_quantitative_analysis.customer_id\n",
";\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "FTZEM81t6mif"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"SELECT customer_quantitative_analysis_prompt\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer` AS customer\n",
" WHERE customer_quantitative_analysis_prompt IS NOT NULL\n",
" LIMIT 10;"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ju-Xd8rc6vLs"
},
"source": [
"## Run the LLM to generate a Customer Summary on Quantitative Analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BoYRQRoy6yr1"
},
"outputs": [],
"source": [
"from google.cloud import bigquery\n",
"import pandas as pd\n",
"\n",
"client = bigquery.Client()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dOG1zYZ260oF"
},
"outputs": [],
"source": [
"# Process in batches\n",
"batch_size = 100\n",
"\n",
"# Set the parameters so we are more deterministic and less creative/random responses\n",
"llm_temperature = .80\n",
"llm_max_output_tokens = 1024\n",
"llm_top_p = .70\n",
"llm_top_k = 25\n",
"\n",
"update_sql=\"\"\"\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer` AS customer\n",
" SET llm_customer_quantitative_analysis_json = child.ml_generate_text_result\n",
" FROM (SELECT *\n",
" FROM ML.GENERATE_TEXT(MODEL`${project_id}.${bigquery_rideshare_llm_enriched_dataset}.gemini_model`,\n",
" (SELECT customer_id,\n",
" customer_quantitative_analysis_prompt AS prompt\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer`\n",
" WHERE (llm_customer_quantitative_analysis_json IS NULL\n",
" OR\n",
" JSON_VALUE(llm_customer_quantitative_analysis_json, '$.candidates[0].content.parts[0].text') IS NULL\n",
" )\n",
" AND include_in_llm_processing = TRUE\n",
" AND customer_quantitative_analysis_prompt IS NOT NULL\n",
" LIMIT {batch_size}),\n",
" STRUCT(\n",
" {llm_temperature} AS temperature,\n",
" {llm_max_output_tokens} AS max_output_tokens,\n",
" {llm_top_p} AS top_p,\n",
" {llm_top_k} AS top_k\n",
" ))\n",
" ) AS child\n",
"WHERE customer.customer_id = child.customer_id\n",
" \"\"\".format(batch_size = batch_size,\n",
" llm_temperature = llm_temperature,\n",
" llm_max_output_tokens = llm_max_output_tokens,\n",
" llm_top_p = llm_top_p,\n",
" llm_top_k = llm_top_k)\n",
"\n",
"print(\"SQL: {update_sql}\".format(update_sql=update_sql))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qeUw8dqf63cz"
},
"outputs": [],
"source": [
"# Score while records remain\n",
"# score in groups of batch_size records (we can do up to 10,000 at a time)\n",
"import time\n",
"\n",
"done = False\n",
"displayed_first_sql = False\n",
"original_record_count = 0\n",
"\n",
"while done == False:\n",
" # Get the count of records to score\n",
" sql = \"\"\"\n",
" SELECT COUNT(*) AS cnt\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer`\n",
" WHERE (llm_customer_quantitative_analysis_json IS NULL\n",
" OR\n",
" JSON_VALUE(llm_customer_quantitative_analysis_json, '$.candidates[0].content.parts[0].text') IS NULL\n",
" )\n",
" AND include_in_llm_processing = TRUE\n",
" AND customer_quantitative_analysis_prompt IS NOT NULL;\n",
" \"\"\"\n",
"\n",
" df_record_count = client.query(sql).to_dataframe()\n",
" cnt = df_record_count['cnt'].head(1).item()\n",
" if displayed_first_sql == False:\n",
" original_record_count = cnt\n",
" displayed_first_sql = True\n",
"\n",
" print(\"Remaining records to process: \", cnt, \" out of\", original_record_count, \" batch_size: \", batch_size)\n",
"\n",
"\n",
" if cnt == 0:\n",
" done = True\n",
" else:\n",
" # https://github.com/googleapis/python-bigquery/tree/master/samples\n",
" job_config = bigquery.QueryJobConfig(priority=bigquery.QueryPriority.INTERACTIVE)\n",
" query_job = client.query(update_sql, job_config=job_config)\n",
"\n",
" # Check on the progress by getting the job's updated state.\n",
" query_job = client.get_job(\n",
" query_job.job_id, location=query_job.location\n",
" )\n",
" print(\"Job {} is currently in state {}\".format(query_job.job_id, query_job.state))\n",
"\n",
" while query_job.state != \"DONE\":\n",
" time.sleep(5)\n",
" query_job = client.get_job(\n",
" query_job.job_id, location=query_job.location\n",
" )\n",
" print(\"Job {} is currently in state {}\".format(query_job.job_id, query_job.state))\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ri7kJ1IX6728"
},
"source": [
"## Parse the LLM JSON results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "a6M1YZ-J6-Kt"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"UPDATE `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer` customer\n",
" SET llm_customer_quantitative_analysis = JSON_VALUE(llm_customer_quantitative_analysis_json, '$.candidates[0].content.parts[0].text')\n",
" WHERE llm_customer_quantitative_analysis_json IS NOT NULL\n",
" AND llm_customer_quantitative_analysis IS NULL;"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PwZx_GIR6_bL"
},
"outputs": [],
"source": [
"%%bigquery\n",
"\n",
"SELECT customer_id, customer_quantitative_analysis_prompt, llm_customer_quantitative_analysis_json, llm_customer_quantitative_analysis\n",
" FROM `${project_id}.${bigquery_rideshare_llm_enriched_dataset}.customer`\n",
" WHERE llm_customer_quantitative_analysis_json IS NOT NULL\n",
" AND llm_customer_quantitative_analysis IS NOT NULL\n",
"LIMIT 20;\n"
]
}
],
"metadata": {
"colab": {
"name": "BigQuery table",
"private_outputs": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}