def run_logistic()

in 07_sparkml/logistic.py [0:0]


def run_logistic(BUCKET):
    # Create spark session
    sc = SparkContext('local', 'logistic')
    spark = SparkSession \
        .builder \
        .appName("Logistic regression w/ Spark ML") \
        .getOrCreate()

    # read dataset
    traindays = spark.read \
        .option("header", "true") \
        .csv('gs://{}/flights/trainday.csv'.format(BUCKET))
    traindays.createOrReplaceTempView('traindays')

    # inputs = 'gs://{}/flights/tzcorr/all_flights-00000-*'.format(BUCKET)  # 1/30th
    inputs = 'gs://{}/flights/tzcorr/all_flights-*'.format(BUCKET)  # FULL
    flights = spark.read.json(inputs)

    # this view can now be queried ...
    flights.createOrReplaceTempView('flights')


    # logistic regression
    trainquery = """
    SELECT
      DEP_DELAY, TAXI_OUT, ARR_DELAY, DISTANCE
    FROM flights f
    JOIN traindays t
    ON f.FL_DATE == t.FL_DATE
    WHERE
      t.is_train_day == 'True' AND
      f.CANCELLED == 'False' AND 
      f.DIVERTED == 'False'
    """
    traindata = spark.sql(trainquery)

    def to_example(fields):
      return LabeledPoint(\
                  float(fields['ARR_DELAY'] < 15), #ontime \
                  [ \
                      fields['DEP_DELAY'], # DEP_DELAY \
                      fields['TAXI_OUT'], # TAXI_OUT \
                      fields['DISTANCE'], # DISTANCE \
                  ])

    examples = traindata.rdd.map(to_example)
    lrmodel = LogisticRegressionWithLBFGS.train(examples, intercept=True)
    lrmodel.setThreshold(0.7)

    # save model
    MODEL_FILE='gs://{}/flights/sparkmloutput/model'.format(BUCKET)
    lrmodel.save(sc, MODEL_FILE)
    logging.info('Logistic regression model saved in {}'.format(MODEL_FILE))

    # evaluate
    testquery = trainquery.replace("t.is_train_day == 'True'","t.is_train_day == 'False'")
    testdata = spark.sql(testquery)
    examples = testdata.rdd.map(to_example)

    # Evaluate model
    lrmodel.clearThreshold() # so it returns probabilities
    labelpred = examples.map(lambda p: (p.label, lrmodel.predict(p.features)))
    logging.info('All flights: {}'.format(eval_model(labelpred)))


    # keep only those examples near the decision threshold
    labelpred = labelpred.filter(lambda data: data[1] > 0.65 and data[1] < 0.75)
    logging.info('Flights near decision threshold: {}'.format(eval_model(labelpred)))