def run()

in 11_realtime/make_predictions.py [0:0]


def run(project, bucket, region, source, sink):
    if source == 'local':
        logging.info('Running locally on small extract')
        argv = [
            '--project={0}'.format(project),
            '--runner=DirectRunner'
        ]
        flights_output = '/tmp/predictions'
    else:
        logging.info('Running in the cloud on full dataset input={}'.format(source))
        argv = [
            '--project={0}'.format(project),
            '--job_name=ch10predictions',
            '--save_main_session',
            '--staging_location=gs://{0}/flights/staging/'.format(bucket),
            '--temp_location=gs://{0}/flights/temp/'.format(bucket),
            '--setup_file=./setup.py',
            '--autoscaling_algorithm=THROUGHPUT_BASED',
            '--max_num_workers=8',
            '--region={}'.format(region),
            '--runner=DataflowRunner'
        ]
        if source == 'pubsub':
            logging.info("Turning on streaming. Cancel the pipeline from GCP console")
            argv += ['--streaming']
        flights_output = 'gs://{}/flights/ch11/predictions'.format(bucket)

    with beam.Pipeline(argv=argv) as pipeline:

        # read the event stream
        if source == 'local':
            input_file = './simevents_sample.json'
            logging.info("Reading from {} ... Writing to {}".format(input_file, flights_output))
            events = (
                    pipeline
                    | 'read_input' >> beam.io.ReadFromText(input_file)
                    | 'parse_input' >> beam.Map(lambda line: json.loads(line))
            )
        elif source == 'bigquery':
            input_query = ("SELECT EVENT_DATA FROM dsongcp.flights_simevents " +
                           "WHERE EVENT_TIME BETWEEN '2015-03-01' AND '2015-03-02'")
            logging.info("Reading from {} ... Writing to {}".format(input_query, flights_output))
            events = (
                    pipeline
                    | 'read_input' >> beam.io.ReadFromBigQuery(query=input_query, use_standard_sql=True)
                    | 'parse_input' >> beam.Map(lambda row: json.loads(row['EVENT_DATA']))
            )
        elif source == 'pubsub':
            input_topic = "projects/{}/topics/wheelsoff".format(project)
            logging.info("Reading from {} ... Writing to {}".format(input_topic, flights_output))
            events = (
                    pipeline
                    | 'read_input' >> beam.io.ReadFromPubSub(topic=input_topic,
                                                             timestamp_attribute='EventTimeStamp')
                    | 'parse_input' >> beam.Map(lambda s: json.loads(s))
            )
        else:
            logging.error("Unknown input type {}".format(source))
            return

        # events -> features.  See ./flights_transforms.py for the code shared between training & prediction
        features = ftxf.transform_events_to_features(events, for_training=False)

        # call model endpoint
        # shared_handle = beam.utils.shared.Shared()
        preds = (
                features
                | 'into_global' >> beam.WindowInto(beam.window.GlobalWindows())
                | 'batch_instances' >> beam.BatchElements(min_batch_size=1, max_batch_size=64)
                | 'model_predict' >> beam.ParDo(FlightsModelInvoker())
        )

        # write it out
        if sink == 'file':
            (preds
             | 'to_string' >> beam.Map(lambda f: ','.join([str(x) for x in f.values()]))
             | 'to_gcs' >> beam.io.textio.WriteToText(flights_output,
                                                      file_name_suffix='.csv', header=CSV_HEADER,
                                                      # workaround b/207384805
                                                      num_shards=1)
             )
        elif sink == 'bigquery':
            preds_schema = ','.join([
                'event_time:timestamp',
                'prob_ontime:float',
                'dep_delay:float',
                'taxi_out:float',
                'distance:float',
                'origin:string',
                'dest:string',
                'dep_hour:integer',
                'is_weekday:integer',
                'carrier:string',
                'dep_airport_lat:float,dep_airport_lon:float',
                'arr_airport_lat:float,arr_airport_lon:float',
                'avg_dep_delay:float',
                'avg_taxi_out:float',
            ])
            (preds
             | 'to_bigquery' >> beam.io.WriteToBigQuery(
                        'dsongcp.streaming_preds', schema=preds_schema,
                        # write_disposition=beam.io.BigQueryDisposition.WRITE_TRUNCATE,
                        create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
                        method='STREAMING_INSERTS'
                    )
             )
        else:
            logging.error("Unknown output type {}".format(sink))
            return