in 11_realtime/make_predictions.py [0:0]
def process(self, input_data):
# call predictions and pull out probability
logging.info("Invoking ML model on {} flights".format(len(input_data)))
# drop inputs not needed by model
features = [x.copy() for x in input_data]
for f in features:
f.pop('event_time')
# call model
predictions = self.endpoint.predict(features).predictions
for idx, input_instance in enumerate(input_data):
result = input_instance.copy()
result['prob_ontime'] = predictions[idx][0]
yield result