in 10_mlops/model.py [0:0]
def read_dataset(pattern, batch_size, mode=tf.estimator.ModeKeys.TRAIN, truncate=None):
dataset = tf.data.experimental.make_csv_dataset(
pattern, batch_size,
column_names=CSV_COLUMNS,
column_defaults=CSV_COLUMN_TYPES,
sloppy=True,
num_parallel_reads=2,
ignore_errors=True,
num_epochs=1)
dataset = dataset.map(features_and_labels)
if mode == tf.estimator.ModeKeys.TRAIN:
dataset = dataset.shuffle(batch_size * 10)
dataset = dataset.repeat()
dataset = dataset.prefetch(1)
if truncate is not None:
dataset = dataset.take(truncate)
return dataset