04_streaming/realtime/avg02.py (74 lines of code) (raw):

#!/usr/bin/env python3 # Copyright 2021 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import apache_beam as beam import logging import json import numpy as np DATETIME_FORMAT = '%Y-%m-%dT%H:%M:%S' def compute_stats(airport, events): arrived = [event['ARR_DELAY'] for event in events if event['EVENT_TYPE'] == 'arrived'] avg_arr_delay = float(np.mean(arrived)) if len(arrived) > 0 else None departed = [event['DEP_DELAY'] for event in events if event['EVENT_TYPE'] == 'departed'] avg_dep_delay = float(np.mean(departed)) if len(departed) > 0 else None num_flights = len(events) start_time = min([event['EVENT_TIME'] for event in events]) latest_time = max([event['EVENT_TIME'] for event in events]) return { 'AIRPORT': airport, 'AVG_ARR_DELAY': avg_arr_delay, 'AVG_DEP_DELAY': avg_dep_delay, 'NUM_FLIGHTS': num_flights, 'START_TIME': start_time, 'END_TIME': latest_time } def by_airport(event): if event['EVENT_TYPE'] == 'departed': return event['ORIGIN'], event else: return event['DEST'], event def run(project, bucket, region): argv = [ '--project={0}'.format(project), '--job_name=ch04avgdelay', '--streaming', '--save_main_session', '--staging_location=gs://{0}/flights/staging/'.format(bucket), '--temp_location=gs://{0}/flights/temp/'.format(bucket), '--autoscaling_algorithm=THROUGHPUT_BASED', '--max_num_workers=8', '--region={}'.format(region), '--runner=DirectRunner' ] with beam.Pipeline(argv=argv) as pipeline: events = {} for event_name in ['arrived', 'departed']: topic_name = "projects/{}/topics/{}".format(project, event_name) events[event_name] = (pipeline | 'read:{}'.format(event_name) >> beam.io.ReadFromPubSub( topic=topic_name, timestamp_attribute='EventTimeStamp') | 'parse:{}'.format(event_name) >> beam.Map(lambda s: json.loads(s)) ) all_events = (events['arrived'], events['departed']) | beam.Flatten() stats = (all_events | 'byairport' >> beam.Map(by_airport) | 'window' >> beam.WindowInto(beam.window.SlidingWindows(60 * 60, 5 * 60)) | 'group' >> beam.GroupByKey() | 'stats' >> beam.Map(lambda x: compute_stats(x[0], x[1])) ) stats_schema = ','.join(['AIRPORT:string,AVG_ARR_DELAY:float,AVG_DEP_DELAY:float', 'NUM_FLIGHTS:int64,START_TIME:timestamp,END_TIME:timestamp']) (stats | 'bqout' >> beam.io.WriteToBigQuery( 'dsongcp.streaming_delays', schema=stats_schema, create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED ) ) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Run pipeline on the cloud') parser.add_argument('-p', '--project', help='Unique project ID', required=True) parser.add_argument('-b', '--bucket', help='Bucket where gs://BUCKET/flights/airports/airports.csv.gz exists', required=True) parser.add_argument('-r', '--region', help='Region in which to run the Dataflow job. Choose the same region as your bucket.', required=True) args = vars(parser.parse_args()) run(project=args['project'], bucket=args['bucket'], region=args['region'])