04_streaming/realtime/avg02.py (74 lines of code) (raw):
#!/usr/bin/env python3
# Copyright 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import apache_beam as beam
import logging
import json
import numpy as np
DATETIME_FORMAT = '%Y-%m-%dT%H:%M:%S'
def compute_stats(airport, events):
arrived = [event['ARR_DELAY'] for event in events if event['EVENT_TYPE'] == 'arrived']
avg_arr_delay = float(np.mean(arrived)) if len(arrived) > 0 else None
departed = [event['DEP_DELAY'] for event in events if event['EVENT_TYPE'] == 'departed']
avg_dep_delay = float(np.mean(departed)) if len(departed) > 0 else None
num_flights = len(events)
start_time = min([event['EVENT_TIME'] for event in events])
latest_time = max([event['EVENT_TIME'] for event in events])
return {
'AIRPORT': airport,
'AVG_ARR_DELAY': avg_arr_delay,
'AVG_DEP_DELAY': avg_dep_delay,
'NUM_FLIGHTS': num_flights,
'START_TIME': start_time,
'END_TIME': latest_time
}
def by_airport(event):
if event['EVENT_TYPE'] == 'departed':
return event['ORIGIN'], event
else:
return event['DEST'], event
def run(project, bucket, region):
argv = [
'--project={0}'.format(project),
'--job_name=ch04avgdelay',
'--streaming',
'--save_main_session',
'--staging_location=gs://{0}/flights/staging/'.format(bucket),
'--temp_location=gs://{0}/flights/temp/'.format(bucket),
'--autoscaling_algorithm=THROUGHPUT_BASED',
'--max_num_workers=8',
'--region={}'.format(region),
'--runner=DirectRunner'
]
with beam.Pipeline(argv=argv) as pipeline:
events = {}
for event_name in ['arrived', 'departed']:
topic_name = "projects/{}/topics/{}".format(project, event_name)
events[event_name] = (pipeline
| 'read:{}'.format(event_name) >> beam.io.ReadFromPubSub(
topic=topic_name, timestamp_attribute='EventTimeStamp')
| 'parse:{}'.format(event_name) >> beam.Map(lambda s: json.loads(s))
)
all_events = (events['arrived'], events['departed']) | beam.Flatten()
stats = (all_events
| 'byairport' >> beam.Map(by_airport)
| 'window' >> beam.WindowInto(beam.window.SlidingWindows(60 * 60, 5 * 60))
| 'group' >> beam.GroupByKey()
| 'stats' >> beam.Map(lambda x: compute_stats(x[0], x[1]))
)
stats_schema = ','.join(['AIRPORT:string,AVG_ARR_DELAY:float,AVG_DEP_DELAY:float',
'NUM_FLIGHTS:int64,START_TIME:timestamp,END_TIME:timestamp'])
(stats
| 'bqout' >> beam.io.WriteToBigQuery(
'dsongcp.streaming_delays', schema=stats_schema,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED
)
)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Run pipeline on the cloud')
parser.add_argument('-p', '--project', help='Unique project ID', required=True)
parser.add_argument('-b', '--bucket', help='Bucket where gs://BUCKET/flights/airports/airports.csv.gz exists',
required=True)
parser.add_argument('-r', '--region',
help='Region in which to run the Dataflow job. Choose the same region as your bucket.',
required=True)
args = vars(parser.parse_args())
run(project=args['project'], bucket=args['bucket'], region=args['region'])