07_sparkml/experiment.py (130 lines of code) (raw):
#!/usr/bin/env python3
# Copyright 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pyspark.mllib.classification import LogisticRegressionWithLBFGS
from pyspark.mllib.regression import LabeledPoint
from pyspark.sql import SparkSession
from pyspark import SparkContext
import logging
import numpy as np
NUM_PARTITIONS = 1000
def get_category(hour):
if hour < 6 or hour > 20:
return [1, 0, 0] # night
if hour < 10:
return [0, 1, 0] # morning
if hour < 17:
return [0, 0, 1] # mid-day
else:
return [0, 0, 0] # evening
def get_local_hour(timestamp, correction):
import datetime
TIME_FORMAT = '%Y-%m-%d %H:%M:%S'
timestamp = timestamp.replace('T', ' ') # incase different
t = datetime.datetime.strptime(timestamp, TIME_FORMAT)
d = datetime.timedelta(seconds=correction)
t = t + d
# return [t.hour] # raw
# theta = np.radians(360 * t.hour / 24.0) # von-Miyes
# return [np.sin(theta), np.cos(theta)]
return get_category(t.hour) # bucketize
def eval(labelpred):
'''
data = (label, pred)
data[0] = label
data[1] = pred
'''
cancel = labelpred.filter(lambda data: data[1] < 0.7)
nocancel = labelpred.filter(lambda data: data[1] >= 0.7)
corr_cancel = cancel.filter(lambda data: data[0] == int(data[1] >= 0.7)).count()
corr_nocancel = nocancel.filter(lambda data: data[0] == int(data[1] >= 0.7)).count()
cancel_denom = cancel.count()
nocancel_denom = nocancel.count()
if cancel_denom == 0:
cancel_denom = 1
if nocancel_denom == 0:
nocancel_denom = 1
totsqe = labelpred.map(
lambda data: (data[0] - data[1]) * (data[0] - data[1])
).sum()
rmse = np.sqrt(totsqe / float(cancel.count() + nocancel.count()))
return {
'rmse': rmse,
'total_cancel': cancel.count(),
'correct_cancel': float(corr_cancel) / cancel_denom,
'total_noncancel': nocancel.count(),
'correct_noncancel': float(corr_nocancel) / nocancel_denom
}
def run_experiment(BUCKET, SCALE_AND_CLIP, WITH_TIME, WITH_ORIGIN):
# Create spark session
sc = SparkContext('local', 'experimentation')
spark = SparkSession \
.builder \
.appName("Logistic regression w/ Spark ML") \
.getOrCreate()
# read dataset
traindays = spark.read \
.option("header", "true") \
.csv('gs://{}/flights/trainday.csv'.format(BUCKET))
traindays.createOrReplaceTempView('traindays')
#inputs = 'gs://{}/flights/tzcorr/all_flights-00000-*'.format(BUCKET) # 1/30th
inputs = 'gs://{}/flights/tzcorr/all_flights-*'.format(BUCKET) # FULL
flights = spark.read.json(inputs)
# this view can now be queried
flights.createOrReplaceTempView('flights')
# separate training and validation data
from pyspark.sql.functions import rand
SEED=13
traindays = traindays.withColumn("holdout", rand(SEED) > 0.8) # 80% of data is for training
traindays.createOrReplaceTempView('traindays')
# logistic regression
trainquery = """
SELECT
ORIGIN, DEP_DELAY, TAXI_OUT, ARR_DELAY, DISTANCE, DEP_TIME, DEP_AIRPORT_TZOFFSET
FROM flights f
JOIN traindays t
ON f.FL_DATE == t.FL_DATE
WHERE
t.is_train_day == 'True' AND
t.holdout == False AND
f.CANCELLED == 'False' AND
f.DIVERTED == 'False'
"""
traindata = spark.sql(trainquery).repartition(NUM_PARTITIONS)
def to_example(fields):
features = [
fields['DEP_DELAY'],
fields['DISTANCE'],
fields['TAXI_OUT'],
]
if SCALE_AND_CLIP:
def clip(x):
if x < -1:
return -1
if x > 1:
return 1
return x
features = [
clip(float(fields['DEP_DELAY']) / 30),
clip((float(fields['DISTANCE']) / 1000) - 1),
clip((float(fields['TAXI_OUT']) / 10) - 1),
]
if WITH_TIME:
features.extend(
get_local_hour(fields['DEP_TIME'], fields['DEP_AIRPORT_TZOFFSET']))
if WITH_ORIGIN:
features.extend(fields['origin_onehot'])
return LabeledPoint(
float(fields['ARR_DELAY'] < 15), #ontime
features)
def add_origin(df, trained_model=None):
from pyspark.ml.feature import OneHotEncoder, StringIndexer
if not trained_model:
indexer = StringIndexer(inputCol='ORIGIN', outputCol='origin_index')
trained_model = indexer.fit(df)
indexed = trained_model.transform(df)
encoder = OneHotEncoder(inputCol='origin_index', outputCol='origin_onehot')
return trained_model, encoder.fit(indexed).transform(indexed)
if WITH_ORIGIN:
index_model, traindata = add_origin(traindata)
examples = traindata.rdd.map(to_example)
lrmodel = LogisticRegressionWithLBFGS.train(examples, intercept=True)
lrmodel.clearThreshold() # return probabilities
# save model
MODEL_FILE='gs://' + BUCKET + '/flights/sparkmloutput/model'
lrmodel.save(sc, MODEL_FILE)
logging.info("Saved trained model to {}".format(MODEL_FILE))
# evaluate model on the heldout data
evalquery = trainquery.replace("t.holdout == False", "t.holdout == True")
evaldata = spark.sql(evalquery).repartition(NUM_PARTITIONS)
if WITH_ORIGIN:
evaldata = add_origin(evaldata, index_model)
examples = evaldata.rdd.map(to_example)
labelpred = examples.map(lambda p: (p.label, lrmodel.predict(p.features)))
logging.info(eval(labelpred))
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Run experiments with different features in Spark')
parser.add_argument('--bucket', help='GCS bucket to read/write data', required=True)
parser.add_argument('--debug', dest='debug', action='store_true', help='Specify if you want debug messages')
args = parser.parse_args()
if args.debug:
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG)
else:
logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO)
run_experiment(args.bucket, SCALE_AND_CLIP=False, WITH_TIME=False, WITH_ORIGIN=False)