in pipelines/iot_analytics/scripts/model.py [0:0]
def create_sample_data(num_samples):
data = {
"vehicle_id": [],
"max_temperature": [],
"max_vibration": [],
"last_service_date": [],
"needs_maintenance": []
}
for i in range(num_samples):
vehicle_id = str(1000 + i)
max_temperature = np.random.randint(50, 100)
max_vibration = np.random.uniform(0, 1)
last_service_date = datetime.now() - timedelta(
days=np.random.randint(0, 365))
last_service_date_str = last_service_date.strftime("%Y-%m-%d")
needs_maintenance = (max_temperature > 75) or (max_vibration > 0.5) or (
last_service_date < datetime.now() - timedelta(days=180))
data["vehicle_id"].append(vehicle_id)
data["max_temperature"].append(max_temperature)
data["max_vibration"].append(max_vibration)
data["last_service_date"].append(last_service_date_str)
data["needs_maintenance"].append(needs_maintenance)
return pd.DataFrame(data)