pipelines/iot_analytics/iot_analytics_pipeline/trigger_inference.py (20 lines of code) (raw):

# Copyright 2025 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pipeline of the IoT Analytics Dataflow Solution guide. """ import apache_beam as beam import pandas as pd class RunInference(beam.DoFn): """ A custom model to predict the if vehicle needs_maintenance """ def process(self, element): df = pd.DataFrame([element]) df["last_service_date"] = ( pd.to_datetime(df["last_service_date"]) - pd.to_datetime(df["last_service_date"]).min()).dt.days prediction = self.model.predict( df[["max_temperature", "max_vibration", "last_service_date"]]) results = beam.Row( vehicle_id=str(element["vehicle_id"]), max_temperature=float(element["max_temperature"]), max_vibration=float(element["max_vibration"]), latest_timestamp=element["latest_timestamp"], last_service_date=element["last_service_date"], maintenance_type=element["maintenance_type"], model=element["model"], needs_maintenance=prediction[0]) yield results._asdict()