#  Copyright 2025 Google LLC
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      https://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""
Creates model for IoT Analytics Solution Dataflow Solution guide.
"""

import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import pickle


def create_sample_data(num_samples):
  data = {
      "vehicle_id": [],
      "max_temperature": [],
      "max_vibration": [],
      "last_service_date": [],
      "needs_maintenance": []
  }

  for i in range(num_samples):
    vehicle_id = str(1000 + i)
    max_temperature = np.random.randint(50, 100)
    max_vibration = np.random.uniform(0, 1)
    last_service_date = datetime.now() - timedelta(
        days=np.random.randint(0, 365))
    last_service_date_str = last_service_date.strftime("%Y-%m-%d")

    needs_maintenance = (max_temperature > 75) or (max_vibration > 0.5) or (
        last_service_date < datetime.now() - timedelta(days=180))

    data["vehicle_id"].append(vehicle_id)
    data["max_temperature"].append(max_temperature)
    data["max_vibration"].append(max_vibration)
    data["last_service_date"].append(last_service_date_str)
    data["needs_maintenance"].append(needs_maintenance)

  return pd.DataFrame(data)


# Create a sample dataset with 100 samples
df = create_sample_data(100)
print(df.head(n=10).to_markdown())

# Convert the last_service_date to a datetime object
df["last_service_date"] = pd.to_datetime(df["last_service_date"])

# Features and target variable
X = df[["max_temperature", "max_vibration", "last_service_date"]]
y = df["needs_maintenance"].astype(int)

# Convert last_service_date to numeric for modeling
X["last_service_date"] = (X["last_service_date"] -
                          X["last_service_date"].min()).dt.days

# Split the dataset
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42)

# Create and train the model
model = LogisticRegression()
model.fit(X_train, y_train)

# Save the model to a local file
with open("maintenance_model.pkl", "wb") as f:
  print("Added Model")
  pickle.dump(model, f)
