in runinferenceutil/infra.py [0:0]
def loadstoremodel():
state_dict_path = "saved_model"
model_name = "google/flan-t5-base"
# Load pre-trained model from hugging face registry or local disk
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name, torch_dtype=torch.bfloat16
)
#Save Model in local disk
torch.save(model.state_dict(), state_dict_path)