def fnMain()

in dataplex-quickstart-labs/00-resources/scripts/pyspark/chicago-crimes-analytics/curate_crimes.py [0:0]


def fnMain(logger, args):
# {{ Start main

    # 1. Capture Spark application input
    projectID = args.projectID
    tableFQN = args.tableFQN
    peristencePath = args.peristencePath

    # 2. Create Spark session
    logger.info('....Initializing spark & spark configs')
    spark = SparkSession.builder.appName("Curate Chicago Crimes").getOrCreate()
    logger.info('....===================================')

    # 3. Create curated crimes SQL
    # 3.1. Read data from BigQuery
    logger.info('....Creating a base DF off of a BigQuery table')
    baseDF = spark.read \
    .format('bigquery') \
    .load(f'{projectID}.oda_raw_zone.crimes_raw')
    logger.info('....===================================')

    # 3.2. Register temp table
    logger.info('....Creating a temp table')
    baseDF.createOrReplaceTempView("crimes_raw")
    baseDF.count()
    logger.info('....===================================')

    # 3.3. Then create the curate crimes SQL
    curatedCrimesSQL="SELECT case_number,primary_type as case_type,date as case_date,year AS case_year,date_format(date, 'MMM') AS case_month,date_format(date,'E') AS case_day_of_week, hour(date) AS case_hour_of_day FROM crimes_raw;"
    print(f"Curated Crimes SQL: {curatedCrimesSQL}")
    logger.info('....===================================')
    
    try:
        # 4. Drop table if exists
        #logger.info('....Dropping table if it exists')
        #spark.sql(f"DROP TABLE IF EXISTS {tableFQN}").show(truncate=False)
        #logger.info('....===================================')
        
        # 5. Curate crimes
        logger.info('....Creating dataframe')
        curatedCrimesDF = spark.sql(curatedCrimesSQL)
        curatedCrimesDF.dropDuplicates()
        curatedCrimesDF.count()
        logger.info('....===================================')
    
        # 6. Persist to the data lake bucket in the curated zone
        logger.info('....Persisting dataframe in overwrite mode')
        print(f"peristencePath is {peristencePath}")
        curatedCrimesDF.repartition(17).write.parquet(peristencePath, mode='overwrite')
        logger.info('....===================================')
    
        # 7. Create table definition
        logger.info('....Create table')
        CREATE_TABLE_DDL=f"CREATE TABLE IF NOT EXISTS {tableFQN}(case_number string, case_type string,case_date timestamp, case_year long, case_month string, case_day_of_week string, case_hour_of_day integer) STORED AS PARQUET LOCATION \"{peristencePath}\";"
        print(f"Create Curated Crimes DDL: {CREATE_TABLE_DDL}")
        spark.sql(CREATE_TABLE_DDL).show(truncate=False)
        logger.info('....===================================')

        # 8. Refresh table 
        logger.info('....Refresh table')
        spark.sql(f"REFRESH TABLE {tableFQN};").show(truncate=False)
        logger.info('....===================================')

        # 9. Remove _SUCCESS file
        logger.info('....Deleting _SUCCESS')
        fnDeleteSuccessFlagFile(peristencePath)
        logger.info('....===================================')

    except RuntimeError as coreError:
            logger.error(coreError)
    else:
        logger.info('Successfully completed curating Chicago crimes!')