dataplex-quickstart-labs/00-resources/scripts/airflow/chicago-crimes-analytics/spark_custom_lineage_pipeline.py (264 lines of code) (raw):
# ======================================================================================
# ABOUT
# This script orchestrates the execution of the Chicago crimes reports
# It also includes custom lineage
# ======================================================================================
import os
from airflow.models import Variable
from datetime import datetime
from airflow import models
from airflow.providers.google.cloud.operators.dataproc import (DataprocCreateBatchOperator,DataprocGetBatchOperator)
from datetime import datetime
from airflow.utils.dates import days_ago
import string
import random
from airflow.operators import dummy_operator
from airflow.utils import trigger_rule
from airflow.composer.data_lineage.entities import BigQueryTable
from airflow.lineage import AUTO
# Read environment variables into local variables
PROJECT_ID = models.Variable.get('project_id')
PROJECT_NBR = models.Variable.get('project_nbr')
REGION = models.Variable.get("region")
UMSA = models.Variable.get("umsa")
SUBNET = models.Variable.get("subnet")
# User Managed Service Account FQN
UMSA_FQN=UMSA+"@"+PROJECT_ID+".iam.gserviceaccount.com"
# PySpark script files in GCS, of the individual Spark applications in the pipeline
GCS_URI_CURATE_CRIMES_PYSPARK= f"gs://raw-code-{PROJECT_NBR}/pyspark/chicago-crimes-analytics/curate_crimes.py"
GCS_URI_CRIME_TRENDS_REPORT_PYSPARK= f"gs://raw-code-{PROJECT_NBR}/pyspark/chicago-crimes-analytics/crimes_report.py"
# Dataproc Metastore Resource URI
DPMS_RESOURCE_URI = f"projects/{PROJECT_ID}/locations/{REGION}/services/lab-dpms-{PROJECT_NBR}"
# Define DAG name
dag_name= "Chicago_Crime_Trends_From_Spark_With_Custom_Lineage"
# Generate Pipeline ID
randomizerCharLength = 10
BATCH_ID = ''.join(random.choices(string.digits, k = randomizerCharLength))
# Report bases
REPORT_BASE_NM_CRIMES_YEAR="crimes-by-year"
REPORT_BASE_NM_CRIMES_MONTH="crimes-by-month"
REPORT_BASE_NM_CRIMES_DAY="crimes-by-day"
REPORT_BASE_NM_CRIMES_HOUR="crimes-by-hour"
REPORT_BASE_DIR=f"gs://product-data-{PROJECT_NBR}"
REPORT_CRIMES_YEAR_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_YEAR}-spark"
REPORT_CRIMES_MONTH_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_MONTH}-spark"
REPORT_CRIMES_DAY_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_DAY}-spark"
REPORT_CRIMES_HOUR_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_HOUR}-spark"
# 1a. Curate Crimes Spark application args
CURATE_CRIMES_ARGS_ARRAY = [
f"--projectID={PROJECT_ID}", \
f"--tableFQN=oda_curated_zone.crimes_curated_spark", \
f"--peristencePath=gs://curated-data-{PROJECT_NBR}/crimes-curated-spark/"]
# 1b. Curate Crimes Spark application conf
CURATE_CRIMES_DATAPROC_SERVERLESS_BATCH_CONFIG = {
"pyspark_batch": {
"main_python_file_uri": GCS_URI_CURATE_CRIMES_PYSPARK,
"args": CURATE_CRIMES_ARGS_ARRAY
#,"jar_file_uris": ["gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"]
},
"runtime_config":{
"version": "1.1"
},
"environment_config":{
"execution_config":{
"service_account": UMSA_FQN,
"subnetwork_uri": SUBNET
},
"peripherals_config": {
"metastore_service": DPMS_RESOURCE_URI
},
},
}
# 2a. Crimes By Year Spark application args
CRIMES_BY_YEAR_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} ", \
f"--projectID={PROJECT_ID} ", \
f"--reportDirGcsURI={REPORT_CRIMES_YEAR_LOCATION}", \
f"--reportName=Chicago Crime Trend by Year ", \
f"--reportSQL=SELECT cast(case_year as int) case_year,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark GROUP BY case_year; ", \
f"--reportPartitionCount=1", \
f"--reportTableFQN=oda_product_zone.crimes_by_year_spark ", \
f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_year_spark (case_year int, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_YEAR_LOCATION}\""
]
# 2b. Crimes By Year Spark application conf
CRIMES_BY_YEAR_DATAPROC_SERVERLESS_BATCH_CONFIG = {
"pyspark_batch": {
"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK,
"args": CRIMES_BY_YEAR_ARGS_ARRAY
#,"jar_file_uris": ["gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"]
},
"runtime_config":{
"version": "1.1"
},
"environment_config":{
"execution_config":{
"service_account": UMSA_FQN,
"subnetwork_uri": SUBNET
},
"peripherals_config": {
"metastore_service": DPMS_RESOURCE_URI
},
},
}
# 3a. Crimes By Month Spark application args
CRIMES_BY_MONTH_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} " , \
f"--projectID={PROJECT_ID} ", \
f"--reportDirGcsURI={REPORT_CRIMES_MONTH_LOCATION}", \
f"--reportName=Chicago Crime Trend by Month ", \
f"--reportSQL=SELECT case_month,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark GROUP BY case_month; ", \
f"--reportPartitionCount=1", \
f"--reportTableFQN=oda_product_zone.crimes_by_month_spark ", \
f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_month_spark(case_month string, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_MONTH_LOCATION}\""
]
# 3b. Crimes By Month Spark application conf
CRIMES_BY_MONTH_DATAPROC_SERVERLESS_BATCH_CONFIG = {
"pyspark_batch": {
"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK,
"args": CRIMES_BY_MONTH_ARGS_ARRAY
#,"jar_file_uris": ["gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"]
},
"runtime_config":{
"version": "1.1"
},
"environment_config":{
"execution_config":{
"service_account": UMSA_FQN,
"subnetwork_uri": SUBNET
},
"peripherals_config": {
"metastore_service": DPMS_RESOURCE_URI
},
},
}
# 4a. Crimes By Day Spark application args
CRIMES_BY_DAY_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} " , \
f"--projectID={PROJECT_ID} ", \
f"--reportDirGcsURI={REPORT_CRIMES_DAY_LOCATION}" , \
f"--reportName=Chicago Crime Trend by Day " , \
f"--reportSQL=SELECT case_day_of_week,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark GROUP BY case_day_of_week; " , \
f"--reportPartitionCount=1" , \
f"--reportTableFQN=oda_product_zone.crimes_by_day_spark ", \
f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_day_spark (case_day_of_week string, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_DAY_LOCATION}\""
]
# 4b. Crimes By Day Spark application conf
CRIMES_BY_DAY_DATAPROC_SERVERLESS_BATCH_CONFIG = {
"pyspark_batch": {
"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK,
"args": CRIMES_BY_DAY_ARGS_ARRAY
#,"jar_file_uris": ["gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"]
},
"runtime_config":{
"version": "1.1"
},
"environment_config":{
"execution_config":{
"service_account": UMSA_FQN,
"subnetwork_uri": SUBNET
},
"peripherals_config": {
"metastore_service": DPMS_RESOURCE_URI
}
}
}
# 5a. Crimes By Hour Spark application args
CRIMES_BY_HOUR_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} " , \
f"--projectID={PROJECT_ID} ", \
f"--reportDirGcsURI={REPORT_CRIMES_HOUR_LOCATION}" , \
f"--reportName=Chicago Crime Trend by Hour " , \
f"--reportSQL=SELECT CAST(case_hour_of_day AS int) case_hour_of_day,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark GROUP BY case_hour_of_day; " , \
f"--reportPartitionCount=1", \
f"--reportTableFQN=oda_product_zone.crimes_by_hour_spark ", \
f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_hour_spark(case_hour_of_day int, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_HOUR_LOCATION}\" "
]
# 5b. Crimes By Hour Spark application conf
CRIMES_BY_HOUR_DATAPROC_SERVERLESS_BATCH_CONFIG = {
"pyspark_batch": {
"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK,
"args": CRIMES_BY_HOUR_ARGS_ARRAY
#,"jar_file_uris": ["gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"]
},
"runtime_config":{
"version": "1.1"
},
"environment_config":{
"execution_config":{
"service_account": UMSA_FQN,
"subnetwork_uri": SUBNET
},
"peripherals_config": {
"metastore_service": DPMS_RESOURCE_URI
},
}
}
# Build the pipeline
with models.DAG(
dag_name,
schedule_interval=None,
start_date = days_ago(2),
catchup=False,
) as dag_serverless_batch:
start = dummy_operator.DummyOperator(
task_id='start',
trigger_rule='all_success'
)
curate_chicago_crimes = DataprocCreateBatchOperator(
task_id="CURATE_CRIMES",
project_id=PROJECT_ID,
region=REGION,
batch=CURATE_CRIMES_DATAPROC_SERVERLESS_BATCH_CONFIG,
batch_id=f"chicago-crimes-curate-af-scl-{BATCH_ID}",
inlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_raw_zone',
table_id='crimes_raw',
)],
outlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_curated_zone',
table_id='crimes_curated_spark',
)]
)
trend_by_year = DataprocCreateBatchOperator(
task_id="CRIME_TREND_BY_YEAR",
project_id=PROJECT_ID,
region=REGION,
batch=CRIMES_BY_YEAR_DATAPROC_SERVERLESS_BATCH_CONFIG,
batch_id=f"chicago-crimes-trend-by-year-af-scl-{BATCH_ID}",
inlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_curated_zone',
table_id='crimes_curated_spark',
)],
outlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_product_zone',
table_id='crimes_by_year_spark',
)]
)
trend_by_month = DataprocCreateBatchOperator(
task_id="CRIME_TREND_BY_MONTH",
project_id=PROJECT_ID,
region=REGION,
batch=CRIMES_BY_MONTH_DATAPROC_SERVERLESS_BATCH_CONFIG,
batch_id=f"chicago-crimes-trend-by-month-af-scl-{BATCH_ID}",
inlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_curated_zone',
table_id='crimes_curated_spark',
)],
outlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_product_zone',
table_id='crimes_by_month_spark',
)]
)
trend_by_day = DataprocCreateBatchOperator(
task_id="CRIME_TREND_BY_DAY",
project_id=PROJECT_ID,
region=REGION,
batch=CRIMES_BY_DAY_DATAPROC_SERVERLESS_BATCH_CONFIG,
batch_id=f"chicago-crimes-trend-by-day-af-scl-{BATCH_ID}",
inlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_curated_zone',
table_id='crimes_curated_spark',
)],
outlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_product_zone',
table_id='crimes_by_day_spark',
)]
)
trend_by_hour = DataprocCreateBatchOperator(
task_id="CRIME_TREND_BY_HOUR",
project_id=PROJECT_ID,
region=REGION,
batch=CRIMES_BY_HOUR_DATAPROC_SERVERLESS_BATCH_CONFIG,
batch_id=f"chicago-crimes-trend-by-hour-af-scl-{BATCH_ID}",
inlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_curated_zone',
table_id='crimes_curated_spark',
)],
outlets=[BigQueryTable(
project_id=PROJECT_ID,
dataset_id='oda_product_zone',
table_id='crimes_by_hour_spark',
)]
)
end = dummy_operator.DummyOperator(
task_id='end',
trigger_rule='all_done'
)
start >> curate_chicago_crimes >> [trend_by_year, trend_by_month, trend_by_day, trend_by_hour] >> end