dataplex-quickstart-labs/00-resources/scripts/airflow/chicago-crimes-analytics/spark_dataproc_lineage_pipeline.py (170 lines of code) (raw):

# ====================================================================================== # ABOUT # This script orchestrates the execution of the Chicago crimes reports # It showcases Dataproc lineage # ====================================================================================== import os from airflow.models import Variable from datetime import datetime from airflow import models from airflow.providers.google.cloud.operators.dataproc import ( DataprocSubmitJobOperator, ) from airflow.utils.dates import days_ago from airflow.operators import dummy_operator from airflow.utils import trigger_rule from datetime import datetime from airflow.utils.dates import days_ago import string import random from airflow.composer.data_lineage.entities import BigQueryTable from airflow.lineage import AUTO # Read environment variables into local variables PROJECT_ID = models.Variable.get('project_id') PROJECT_NBR = models.Variable.get('project_nbr') REGION = models.Variable.get("region") UMSA = models.Variable.get("umsa") SUBNET = models.Variable.get("subnet") UMSA_FQN=UMSA+"@"+PROJECT_ID+".iam.gserviceaccount.com" SUBNET_URI=f"projects/{PROJECT_ID}/regions/{REGION}/subnetworks/{SUBNET}" DPGCE_CLUSTER_NM=f"lineage-enabled-spark-cluster-{PROJECT_NBR}" # PySpark script files in GCS, of the individual Spark applications in the pipeline GCS_URI_CURATE_CRIMES_PYSPARK= f"gs://raw-code-{PROJECT_NBR}/pyspark/chicago-crimes-analytics/curate_crimes.py" GCS_URI_CRIME_TRENDS_REPORT_PYSPARK= f"gs://raw-code-{PROJECT_NBR}/pyspark/chicago-crimes-analytics/crimes_report.py" # Dataproc Metastore Resource URI DPMS_RESOURCE_URI = f"projects/{PROJECT_ID}/locations/{REGION}/services/lab-dpms-{PROJECT_NBR}" # Define DAG name dag_name= "Chicago_Crime_Trends_From_Spark_With_Dataproc_OOB_Lineage" # Generate Pipeline ID randomizerCharLength = 10 JOB_ID = ''.join(random.choices(string.digits, k = randomizerCharLength)) # Bases BASE_NM_CURATE_CRIMES="curate-crimes-spark-dataproc" REPORT_BASE_NM_CRIMES_YEAR="crimes-by-year-spark-dataproc" REPORT_BASE_NM_CRIMES_MONTH="crimes-by-month-spark-dataproc" REPORT_BASE_NM_CRIMES_DAY="crimes-by-day-spark-dataproc" REPORT_BASE_NM_CRIMES_HOUR="crimes-by-hour-spark-dataproc" REPORT_BASE_DIR=f"gs://product-data-{PROJECT_NBR}" REPORT_CRIMES_YEAR_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_YEAR}" REPORT_CRIMES_MONTH_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_MONTH}" REPORT_CRIMES_DAY_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_DAY}" REPORT_CRIMES_HOUR_LOCATION=f"{REPORT_BASE_DIR}/{REPORT_BASE_NM_CRIMES_HOUR}" # 1a. Curate Crimes Spark application args CURATE_CRIMES_ARGS_ARRAY = [ f"--projectID={PROJECT_ID}", \ f"--tableFQN=oda_curated_zone.crimes_curated_spark_dataproc", \ f"--peristencePath=gs://curated-data-{PROJECT_NBR}/crimes-curated-spark-dataproc/"] # 1b. Curate Crimes Spark application conf CURATE_CRIMES_DATAPROC_GCE_JOB_CONFIG = { "reference": {"job_id": BASE_NM_CURATE_CRIMES + f"-{JOB_ID}","project_id": PROJECT_ID}, "placement": {"cluster_name": DPGCE_CLUSTER_NM}, "pyspark_job": {"main_python_file_uri": GCS_URI_CURATE_CRIMES_PYSPARK, "jar_file_uris": [ "gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"], "args": CURATE_CRIMES_ARGS_ARRAY, "properties": {"spark.openlineage.namespace": f"{PROJECT_ID}","spark.openlineage.appName": f"{BASE_NM_CURATE_CRIMES}" } } } # 2a. Crimes By Year Spark application args CRIMES_BY_YEAR_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} ", \ f"--projectID={PROJECT_ID} ", \ f"--reportDirGcsURI={REPORT_CRIMES_YEAR_LOCATION}", \ f"--reportName=Chicago Crime Trend by Year ", \ f"--reportSQL=SELECT cast(case_year as int) case_year,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark_dataproc GROUP BY case_year; ", \ f"--reportPartitionCount=1", \ f"--reportTableFQN=oda_product_zone.crimes_by_year_spark_dataproc ", \ f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_year_spark_dataproc(case_year int, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_YEAR_LOCATION}\"" ] # 2b. Crimes By Year Spark application conf CRIMES_BY_YEAR_DATAPROC_GCE_JOB_CONFIG = { "reference": {"job_id": REPORT_BASE_NM_CRIMES_YEAR + f"-{JOB_ID}","project_id": PROJECT_ID}, "placement": {"cluster_name": DPGCE_CLUSTER_NM}, "pyspark_job": {"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK, "jar_file_uris": [ "gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"], "args": CRIMES_BY_YEAR_ARGS_ARRAY, "properties": {"spark.openlineage.namespace": f"{PROJECT_ID}","spark.openlineage.appName": f"{REPORT_BASE_NM_CRIMES_YEAR}" } } } # 3a. Crimes By Month Spark application args CRIMES_BY_MONTH_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} " , \ f"--projectID={PROJECT_ID} ", \ f"--reportDirGcsURI={REPORT_CRIMES_MONTH_LOCATION}", \ f"--reportName=Chicago Crime Trend by Month ", \ f"--reportSQL=SELECT case_month,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark_dataproc GROUP BY case_month; ", \ f"--reportPartitionCount=1", \ f"--reportTableFQN=oda_product_zone.crimes_by_month_spark_dataproc ", \ f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_month_spark_dataproc(case_month string, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_MONTH_LOCATION}\"" ] # 3b. Crimes By Month Spark application conf CRIMES_BY_MONTH_DATAPROC_GCE_JOB_CONFIG = { "reference": {"job_id": REPORT_BASE_NM_CRIMES_MONTH + f"-{JOB_ID}","project_id": PROJECT_ID}, "placement": {"cluster_name": DPGCE_CLUSTER_NM}, "pyspark_job": {"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK, "jar_file_uris": [ "gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"], "args": CRIMES_BY_MONTH_ARGS_ARRAY, "properties": {"spark.openlineage.namespace": f"{PROJECT_ID}","spark.openlineage.appName": f"{REPORT_BASE_NM_CRIMES_MONTH}" } } } # 4a. Crimes By Day Spark application args CRIMES_BY_DAY_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} " , \ f"--projectID={PROJECT_ID} ", \ f"--reportDirGcsURI={REPORT_CRIMES_DAY_LOCATION}" , \ f"--reportName=Chicago Crime Trend by Day " , \ f"--reportSQL=SELECT case_day_of_week,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark_dataproc GROUP BY case_day_of_week; " , \ f"--reportPartitionCount=1" , \ f"--reportTableFQN=oda_product_zone.crimes_by_day_spark_dataproc ", \ f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_day_spark_dataproc(case_day_of_week string, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_DAY_LOCATION}\"" ] # 4b. Crimes By Day Spark application conf CRIMES_BY_DAY_DATAPROC_GCE_JOB_CONFIG = { "reference": {"job_id": REPORT_BASE_NM_CRIMES_DAY + f"-{JOB_ID}","project_id": PROJECT_ID}, "placement": {"cluster_name": DPGCE_CLUSTER_NM}, "pyspark_job": {"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK, "jar_file_uris": [ "gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"], "args": CRIMES_BY_DAY_ARGS_ARRAY, "properties": {"spark.openlineage.namespace": f"{PROJECT_ID}","spark.openlineage.appName": f"{REPORT_BASE_NM_CRIMES_DAY}" } } } # 5a. Crimes By Hour Spark application args CRIMES_BY_HOUR_ARGS_ARRAY = [f"--projectNbr={PROJECT_NBR} " , \ f"--projectID={PROJECT_ID} ", \ f"--reportDirGcsURI={REPORT_CRIMES_HOUR_LOCATION}" , \ f"--reportName=Chicago Crime Trend by Hour " , \ f"--reportSQL=SELECT CAST(case_hour_of_day AS int) case_hour_of_day,count(*) AS crime_count FROM oda_curated_zone.crimes_curated_spark_dataproc GROUP BY case_hour_of_day; " , \ f"--reportPartitionCount=1", \ f"--reportTableFQN=oda_product_zone.crimes_by_hour_spark_dataproc ", \ f"--reportTableDDL=CREATE TABLE IF NOT EXISTS oda_product_zone.crimes_by_hour_spark_dataproc(case_hour_of_day int, crime_count long) STORED AS PARQUET LOCATION \"{REPORT_CRIMES_HOUR_LOCATION}\" " ] # 5b. Crimes By Hour Spark application conf CRIMES_BY_HOUR_DATAPROC_GCE_JOB_CONFIG = { "reference": {"job_id": REPORT_BASE_NM_CRIMES_HOUR + f"-{JOB_ID}","project_id": PROJECT_ID}, "placement": {"cluster_name": DPGCE_CLUSTER_NM}, "pyspark_job": {"main_python_file_uri": GCS_URI_CRIME_TRENDS_REPORT_PYSPARK, "jar_file_uris": [ "gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar"], "args": CRIMES_BY_HOUR_ARGS_ARRAY, "properties": {"spark.openlineage.namespace": f"{PROJECT_ID}","spark.openlineage.appName": f"{REPORT_BASE_NM_CRIMES_HOUR}" } } } # Build the pipeline with models.DAG( dag_name, schedule_interval=None, start_date = days_ago(2), catchup=False, ) as DAG_DATAPROC_GCE_JOB: start = dummy_operator.DummyOperator( task_id='start', trigger_rule='all_success' ) curate_chicago_crimes = DataprocSubmitJobOperator( task_id="CURATE_CRIMES", project_id=PROJECT_ID, region=REGION, job=CURATE_CRIMES_DATAPROC_GCE_JOB_CONFIG ) trend_by_year = DataprocSubmitJobOperator( task_id="CRIME_TREND_BY_YEAR", project_id=PROJECT_ID, region=REGION, job=CRIMES_BY_YEAR_DATAPROC_GCE_JOB_CONFIG ) trend_by_month = DataprocSubmitJobOperator( task_id="CRIME_TREND_BY_MONTH", project_id=PROJECT_ID, region=REGION, job=CRIMES_BY_MONTH_DATAPROC_GCE_JOB_CONFIG ) trend_by_day = DataprocSubmitJobOperator( task_id="CRIME_TREND_BY_DAY", project_id=PROJECT_ID, region=REGION, job=CRIMES_BY_DAY_DATAPROC_GCE_JOB_CONFIG ) trend_by_hour = DataprocSubmitJobOperator( task_id="CRIME_TREND_BY_HOUR", project_id=PROJECT_ID, region=REGION, job=CRIMES_BY_HOUR_DATAPROC_GCE_JOB_CONFIG ) end = dummy_operator.DummyOperator( task_id='end', trigger_rule='all_done' ) start >> curate_chicago_crimes >> [trend_by_year, trend_by_month, trend_by_day, trend_by_hour] >> end