def run()

in python/dataproc_templates/jdbc/jdbc_to_gcs.py [0:0]


    def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:

        logger: Logger = self.get_logger(spark=spark)

        # Arguments
        #check if secret is passed or the connection string in URL
        #check if secret is passed or the connection string in the agruments
        if str(args[constants.JDBCTOGCS_INPUT_URL])=="":
            input_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBCTOGCS_INPUT_URL_SECRET])
        else:
            input_jdbc_url: str = args[constants.JDBCTOGCS_INPUT_URL]
        

        input_jdbc_driver: str = args[constants.JDBCTOGCS_INPUT_DRIVER]
        input_jdbc_table: str = args[constants.JDBCTOGCS_INPUT_TABLE]
        input_jdbc_sql_query: str = args[constants.JDBCTOGCS_INPUT_SQL_QUERY]
        input_jdbc_partitioncolumn: str = args[constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN]
        input_jdbc_lowerbound: str = args[constants.JDBCTOGCS_INPUT_LOWERBOUND]
        input_jdbc_upperbound: str = args[constants.JDBCTOGCS_INPUT_UPPERBOUND]
        jdbc_numpartitions: str = args[constants.JDBCTOGCS_NUMPARTITIONS]
        input_jdbc_fetchsize: int = args[constants.JDBCTOGCS_INPUT_FETCHSIZE]
        input_jdbc_sessioninitstatement: str = args[constants.JDBCTOGCS_SESSIONINITSTATEMENT]
        output_location: str = args[constants.JDBCTOGCS_OUTPUT_LOCATION]
        output_format: str = args[constants.JDBCTOGCS_OUTPUT_FORMAT]
        output_mode: str = args[constants.JDBCTOGCS_OUTPUT_MODE]
        output_partitioncolumn: str = args[constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN]
        temp_view: str = args[constants.JDBCTOGCS_TEMP_VIEW_NAME]
        temp_sql_query:str = args[constants.JDBCTOGCS_TEMP_SQL_QUERY]

        ignore_keys = {constants.JDBCTOGCS_INPUT_URL}
        filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
        logger.info(
            "Starting JDBC to Cloud Storage Spark job with parameters:\n"
            f"{pprint.pformat(filtered_args)}"
        )

        # Read
        input_data: DataFrame

        read_properties = {constants.JDBC_URL: input_jdbc_url,
                           constants.JDBC_DRIVER: input_jdbc_driver}

        if input_jdbc_table:
            read_properties.update({constants.JDBC_TABLE: input_jdbc_table})
        elif input_jdbc_sql_query:
            read_properties.update({constants.JDBC_QUERY: input_jdbc_sql_query})
        else:
            logger.error("Arguments must have either input table or input SQL query")
            exit(1)

        read_properties.update({constants.JDBC_NUMPARTITIONS: jdbc_numpartitions,
                                constants.JDBC_FETCHSIZE: input_jdbc_fetchsize})

        if input_jdbc_sessioninitstatement:
            read_properties[constants.JDBC_SESSIONINITSTATEMENT] = input_jdbc_sessioninitstatement

        partition_parameters = str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound)
        if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))):
            logger.error("Set all the sql partitioning parameters together-jdbctogcs.input.partitioncolumn,jdbctogcs.input.lowerbound,jdbctogcs.input.upperbound. Refer to README.md for more instructions.")
            exit(1)

        if partition_parameters:
            read_properties.update({constants.JDBC_PARTITIONCOLUMN: input_jdbc_partitioncolumn,
                                    constants.JDBC_LOWERBOUND: input_jdbc_lowerbound,
                                    constants.JDBC_UPPERBOUND: input_jdbc_upperbound})

        input_data = spark.read \
            .format(constants.FORMAT_JDBC) \
            .options(**read_properties) \
            .load()

        if temp_sql_query:
            # Create temp view on source data
            input_data.createGlobalTempView(temp_view)
            # Execute SQL
            output_data = spark.sql(temp_sql_query)
        else:
            output_data = input_data

        # Write
        if (output_partitioncolumn != ""):
            writer: DataFrameWriter = output_data.write.mode(output_mode).partitionBy(output_partitioncolumn)
        else:
            writer: DataFrameWriter = output_data.write.mode(output_mode)

        persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "jdbc.gcs.output.")