in python/dataproc_templates/elasticsearch/elasticsearch_to_bq.py [0:0]
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
es_node: str = args[constants.ES_BQ_INPUT_NODE]
es_index: str = args[constants.ES_BQ_INPUT_INDEX]
es_user: str = args[constants.ES_BQ_NODE_USER]
es_password: str = args[constants.ES_BQ_NODE_PASSWORD]
es_api_key: str = args[constants.ES_BQ_NODE_API_KEY]
flatten_struct = args[constants.ES_BQ_FLATTEN_STRUCT]
flatten_array = args[constants.ES_BQ_FLATTEN_ARRAY]
output_mode: str = args[constants.ES_BQ_OUTPUT_MODE]
big_query_output_dataset: str = args[constants.ES_BQ_OUTPUT_DATASET]
big_query_output_table: str = args[constants.ES_BQ_OUTPUT_TABLE]
ignore_keys = {constants.ES_BQ_NODE_PASSWORD, constants.ES_BQ_NODE_API_KEY}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting Elasticsearch to BigQuery Spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data = ingest_dataframe_from_elasticsearch(
spark, es_node, es_index, es_user, es_password, es_api_key, args, "es.bq.input."
)
if flatten_struct:
# Flatten the Struct Fields
input_data = flatten_struct_fields(input_data)
if flatten_array:
# Flatten the n-D array fields to 1-D array fields
input_data = flatten_array_fields(input_data)
if not input_data.head(1):
logger.info("No records in dataframe, Skipping the BigQuery Load")
return
bq_output_constant_options: dict = constants.get_bq_output_spark_options("es.bq.output.")
spark_options = {bq_output_constant_options[k]: v for k, v in args.items() if k in bq_output_constant_options and v}
# Write
input_data.write \
.format(constants.FORMAT_BIGQUERY) \
.option(constants.TABLE, big_query_output_dataset + "." + big_query_output_table) \
.option("enableListInference", True) \
.mode(output_mode) \
.options(**spark_options) \
.save()