in java/src/main/java/com/google/cloud/dataproc/templates/gcs/GCStoBigquery.java [81:125]
public void runTemplate() {
SparkSession spark = SparkSession.builder().appName("GCS to Bigquery load").getOrCreate();
LOGGER.info("input format: {}", inputFileFormat);
// Set log level
spark.sparkContext().setLogLevel(sparkLogLevel);
Dataset<Row> inputData = null;
switch (inputFileFormat) {
case GCS_BQ_CSV_FORMAT:
inputData =
spark
.read()
.format(GCS_BQ_CSV_FORMAT)
.option(GCS_BQ_CSV_HEADER, true)
.option(GCS_BQ_CSV_INFOR_SCHEMA, true)
.load(inputFileLocation);
break;
case GCS_BQ_AVRO_FORMAT:
inputData = spark.read().format(GCS_BQ_AVRO_EXTD_FORMAT).load(inputFileLocation);
break;
case GCS_BQ_PRQT_FORMAT:
inputData = spark.read().parquet(inputFileLocation);
break;
default:
throw new IllegalArgumentException(
"Currently avro, parquet and csv are the only supported formats");
}
if (bqTempTable != null && bqTempQuery != null) {
inputData.createOrReplaceGlobalTempView(bqTempTable);
inputData = spark.sql(bqTempQuery);
}
inputData
.write()
.format(GCS_BQ_OUTPUT_FORMAT)
.option(GCS_BQ_CSV_HEADER, true)
.option(GCS_BQ_OUTPUT, bigQueryDataset + "." + bigQueryTable)
.option(GCS_BQ_TEMP_BUCKET, bqTempBucket)
.mode(SaveMode.valueOf(outputMode))
.save();
}