in python/dataproc_templates/elasticsearch/elasticsearch_to_gcs.py [0:0]
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
es_node: str = args[constants.ES_GCS_INPUT_NODE]
es_index: str = args[constants.ES_GCS_INPUT_INDEX]
es_user: str = args[constants.ES_GCS_NODE_USER]
es_password: str = args[constants.ES_GCS_NODE_PASSWORD]
es_api_key: str = args[constants.ES_GCS_NODE_API_KEY]
flatten_struct = args[constants.ES_GCS_FLATTEN_STRUCT]
flatten_array = args[constants.ES_GCS_FLATTEN_ARRAY]
output_format: str = args[constants.ES_GCS_OUTPUT_FORMAT]
output_mode: str = args[constants.ES_GCS_OUTPUT_MODE]
output_location: str = args[constants.ES_GCS_OUTPUT_LOCATION]
ignore_keys = {constants.ES_GCS_NODE_PASSWORD, constants.ES_GCS_NODE_API_KEY}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting ElasticSearch to Cloud Storage Spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data = ingest_dataframe_from_elasticsearch(
spark, es_node, es_index, es_user, es_password, es_api_key, args, "es.gcs.input."
)
if flatten_struct:
# Flatten the Struct Fields
input_data = flatten_struct_fields(input_data)
if flatten_array:
# Flatten the n-D array fields to 1-D array fields
input_data = flatten_array_fields(input_data)
if not input_data.head(1):
logger.info("No records in dataframe, Skipping the GCS Load")
return
# Write
writer: DataFrameWriter = input_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "es.gcs.output.")