python/dataproc_templates/gcs/gcs_to_bigtable.py (98 lines of code) (raw):

# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession from dataproc_templates import BaseTemplate from dataproc_templates.util.argument_parsing import add_spark_options from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage import dataproc_templates.util.template_constants as constants from google.cloud import storage __all__ = ['GCSToBigTableTemplate'] class GCSToBigTableTemplate(BaseTemplate): """ Dataproc template implementing loads from GCS into BigTable """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.GCS_BT_INPUT_LOCATION}', dest=constants.GCS_BT_INPUT_LOCATION, required=True, help='Cloud Storage location of the input files' ) parser.add_argument( f'--{constants.GCS_BT_INPUT_FORMAT}', dest=constants.GCS_BT_INPUT_FORMAT, required=True, help='Input file format (one of: avro,parquet,csv,json,delta)', choices=[ constants.FORMAT_AVRO, constants.FORMAT_PRQT, constants.FORMAT_CSV, constants.FORMAT_JSON, constants.FORMAT_DELTA ] ) parser.add_argument( f'--{constants.GCS_BT_PROJECT_ID}', dest=constants.GCS_BT_PROJECT_ID, required=True, help='BigTable project ID' ) parser.add_argument( f'--{constants.GCS_BT_INSTANCE_ID}', dest=constants.GCS_BT_INSTANCE_ID, required=True, help='BigTable instance ID' ) parser.add_argument( f'--{constants.GCS_BT_CREATE_NEW_TABLE}', dest=constants.GCS_BT_CREATE_NEW_TABLE, required=False, help='BigTable create new table flag. Default is false.', default=False ) parser.add_argument( f'--{constants.GCS_BT_BATCH_MUTATE_SIZE}', dest=constants.GCS_BT_BATCH_MUTATE_SIZE, required=False, help='BigTable batch mutate size. Maximum allowed size is 100000. Default is 100.', default=100 ) add_spark_options(parser, constants.get_csv_input_spark_options("gcs.bigtable.input.")) parser.add_argument( f'--{constants.GCS_BT_CATALOG_JSON}', dest=constants.GCS_BT_CATALOG_JSON, required=True, help='BigTable catalog json stored file GCS location' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_location: str = args[constants.GCS_BT_INPUT_LOCATION] input_format: str = args[constants.GCS_BT_INPUT_FORMAT] project_id: str = args[constants.GCS_BT_PROJECT_ID] instance_id: str = args[constants.GCS_BT_INSTANCE_ID] create_new_table: bool = args[constants.GCS_BT_CREATE_NEW_TABLE] batch_mutate_size: int = args[constants.GCS_BT_BATCH_MUTATE_SIZE] logger.info( "Starting Cloud Storage to BigTable Spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read Catalog From GCS storage_client = storage.Client() bucket = storage_client.bucket(args[constants.GCS_BT_CATALOG_JSON].split('/')[2]) blob = bucket.blob('/'.join(args[constants.GCS_BT_CATALOG_JSON].split('/')[3:])) catalog = blob.download_as_text() logger.info(f"Catalog: {catalog}") # Read input_data = ingest_dataframe_from_cloud_storage( spark, args, input_location, input_format, "gcs.bigtable.input." ) # Write input_data.write \ .format(constants.FORMAT_BIGTABLE) \ .options(catalog=catalog) \ .option(constants.GCS_BT_PROJECT_ID, project_id) \ .option(constants.GCS_BT_INSTANCE_ID, instance_id) \ .option(constants.GCS_BT_CREATE_NEW_TABLE, create_new_table) \ .option(constants.GCS_BT_BATCH_MUTATE_SIZE, batch_mutate_size) \ .save()