python/dataproc_templates/gcs/gcs_to_gcs.py (137 lines of code) (raw):

# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint import sys from pyspark.sql import SparkSession, DataFrame, DataFrameWriter from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants from dataproc_templates.util.argument_parsing import add_spark_options from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage __all__ = ['GCSToGCSTemplate'] class GCSToGCSTemplate(BaseTemplate): """ Dataproc template implementing loads from Cloud Storage into Cloud Storage post SQL transformation """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.GCS_TO_GCS_INPUT_LOCATION}', dest=constants.GCS_TO_GCS_INPUT_LOCATION, required=True, help='Cloud Storage location of the input files' ) parser.add_argument( f'--{constants.GCS_TO_GCS_INPUT_FORMAT}', dest=constants.GCS_TO_GCS_INPUT_FORMAT, required=True, help='Cloud Storage input file format (one of: avro,parquet,csv,json,delta)', choices=[ constants.FORMAT_AVRO, constants.FORMAT_PRQT, constants.FORMAT_CSV, constants.FORMAT_JSON, constants.FORMAT_DELTA ] ) add_spark_options(parser, constants.get_csv_input_spark_options("gcs.gcs.input.")) add_spark_options(parser, constants.get_csv_output_spark_options("gcs.gcs.output.")) parser.add_argument( f'--{constants.GCS_TO_GCS_TEMP_VIEW_NAME}', dest=constants.GCS_TO_GCS_TEMP_VIEW_NAME, required=False, default="", help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query' ) parser.add_argument( f'--{constants.GCS_TO_GCS_SQL_QUERY}', dest=constants.GCS_TO_GCS_SQL_QUERY, required=False, default="", help='SQL query for data transformation. This must use the temp view name as the table to query from.' ) parser.add_argument( f'--{constants.GCS_TO_GCS_OUTPUT_PARTITION_COLUMN}', dest=constants.GCS_TO_GCS_OUTPUT_PARTITION_COLUMN, required=False, default="", help='Partition column name to partition the final output in destination bucket' ) parser.add_argument( f'--{constants.GCS_TO_GCS_OUTPUT_FORMAT}', dest=constants.GCS_TO_GCS_OUTPUT_FORMAT, required=False, default=constants.FORMAT_PRQT, help=( 'Output write format ' '(one of: avro,parquet,csv,json)' '(Defaults to parquet)' ), choices=[ constants.FORMAT_AVRO, constants.FORMAT_PRQT, constants.FORMAT_CSV, constants.FORMAT_JSON ] ) parser.add_argument( f'--{constants.GCS_TO_GCS_OUTPUT_MODE}', dest=constants.GCS_TO_GCS_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.GCS_TO_GCS_OUTPUT_LOCATION}', dest=constants.GCS_TO_GCS_OUTPUT_LOCATION, required=True, help=( 'Destination Cloud Storage location' ) ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) if getattr(known_args, constants.GCS_TO_GCS_SQL_QUERY) and not getattr(known_args, constants.GCS_TO_GCS_TEMP_VIEW_NAME): sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query') return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_location: str = args[constants.GCS_TO_GCS_INPUT_LOCATION] input_format: str = args[constants.GCS_TO_GCS_INPUT_FORMAT] gcs_temp_view: str = args[constants.GCS_TO_GCS_TEMP_VIEW_NAME] sql_query: str = args[constants.GCS_TO_GCS_SQL_QUERY] output_partition_column: str = args[constants.GCS_TO_GCS_OUTPUT_PARTITION_COLUMN] output_mode: str = args[constants.GCS_TO_GCS_OUTPUT_MODE] output_format: str = args[constants.GCS_TO_GCS_OUTPUT_FORMAT] output_location: str = args[constants.GCS_TO_GCS_OUTPUT_LOCATION] logger.info( "Starting Cloud Storage to Cloud Storage with tranformations Spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data = ingest_dataframe_from_cloud_storage( spark, args, input_location, input_format, "gcs.gcs.input.", avro_format_override=constants.FORMAT_AVRO ) if sql_query: # Create temp view on source data input_data.createOrReplaceTempView(gcs_temp_view) # Execute SQL output_data = spark.sql(sql_query) else: output_data = input_data # Write if output_partition_column: writer: DataFrameWriter = output_data.write.mode(output_mode).partitionBy(output_partition_column) else: writer: DataFrameWriter = output_data.write.mode(output_mode) persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "gcs.gcs.output.")