python/dataproc_templates/gcs/gcs_to_mongo.py (102 lines of code) (raw):

# Copyright 2023 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants from dataproc_templates.util.argument_parsing import add_spark_options from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage __all__ = ['GCSToMONGOTemplate'] class GCSToMONGOTemplate(BaseTemplate): """ Dataproc template implementing loads from GCS into MongoDB Database """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.GCS_MONGO_INPUT_LOCATION}', dest=constants.GCS_MONGO_INPUT_LOCATION, required=True, help='Cloud Storage location of the input files' ) parser.add_argument( f'--{constants.GCS_MONGO_INPUT_FORMAT}', dest=constants.GCS_MONGO_INPUT_FORMAT, required=True, help='Input file format (one of: avro,parquet,csv,json,delta)', choices=[ constants.FORMAT_AVRO, constants.FORMAT_PRQT, constants.FORMAT_CSV, constants.FORMAT_JSON, constants.FORMAT_DELTA ] ) add_spark_options(parser, constants.get_csv_input_spark_options("gcs.mongo.input.")) parser.add_argument( f'--{constants.GCS_MONGO_OUTPUT_URI}', dest=constants.GCS_MONGO_OUTPUT_URI, required=True, help='GCS MONGO Output Connection Uri' ) parser.add_argument( f'--{constants.GCS_MONGO_OUTPUT_DATABASE}', dest=constants.GCS_MONGO_OUTPUT_DATABASE, required=True, help='GCS MONGO Output Database Name' ) parser.add_argument( f'--{constants.GCS_MONGO_OUTPUT_COLLECTION}', dest=constants.GCS_MONGO_OUTPUT_COLLECTION, required=True, help='GCS MONGO Output Collection Name' ) parser.add_argument( f'--{constants.GCS_MONGO_OUTPUT_MODE}', dest=constants.GCS_MONGO_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.GCS_MONGO_BATCH_SIZE}', dest=constants.GCS_MONGO_BATCH_SIZE, required=False, default=constants.MONGO_DEFAULT_BATCH_SIZE, help='GCS MONGO Output Batch Size' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_location: str = args[constants.GCS_MONGO_INPUT_LOCATION] input_format: str = args[constants.GCS_MONGO_INPUT_FORMAT] output_uri:str = args[constants.GCS_MONGO_OUTPUT_URI] output_database:str = args[constants.GCS_MONGO_OUTPUT_DATABASE] output_collection:str = args[constants.GCS_MONGO_OUTPUT_COLLECTION] output_mode:str = args[constants.GCS_MONGO_OUTPUT_MODE] batch_size:int = args[constants.GCS_MONGO_BATCH_SIZE] ignore_keys = {constants.GCS_MONGO_OUTPUT_URI} filtered_args = {key:val for key,val in args.items() if key not in ignore_keys} logger.info( "Starting GCS to MONGO spark job with parameters:\n" f"{pprint.pformat(filtered_args)}" ) # Read input_data = ingest_dataframe_from_cloud_storage(spark, args, input_location, input_format, "gcs.mongo.input.") # Write input_data.write.format(constants.FORMAT_MONGO)\ .option(constants.MONGO_URL, output_uri) \ .option(constants.MONGO_DATABASE, output_database) \ .option(constants.MONGO_COLLECTION, output_collection) \ .option(constants.MONGO_BATCH_SIZE, batch_size) \ .mode(output_mode) \ .save()