python/dataproc_templates/gcs/gcs_to_mongo.py (102 lines of code) (raw):
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage
__all__ = ['GCSToMONGOTemplate']
class GCSToMONGOTemplate(BaseTemplate):
"""
Dataproc template implementing loads from GCS into MongoDB Database
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.GCS_MONGO_INPUT_LOCATION}',
dest=constants.GCS_MONGO_INPUT_LOCATION,
required=True,
help='Cloud Storage location of the input files'
)
parser.add_argument(
f'--{constants.GCS_MONGO_INPUT_FORMAT}',
dest=constants.GCS_MONGO_INPUT_FORMAT,
required=True,
help='Input file format (one of: avro,parquet,csv,json,delta)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON,
constants.FORMAT_DELTA
]
)
add_spark_options(parser, constants.get_csv_input_spark_options("gcs.mongo.input."))
parser.add_argument(
f'--{constants.GCS_MONGO_OUTPUT_URI}',
dest=constants.GCS_MONGO_OUTPUT_URI,
required=True,
help='GCS MONGO Output Connection Uri'
)
parser.add_argument(
f'--{constants.GCS_MONGO_OUTPUT_DATABASE}',
dest=constants.GCS_MONGO_OUTPUT_DATABASE,
required=True,
help='GCS MONGO Output Database Name'
)
parser.add_argument(
f'--{constants.GCS_MONGO_OUTPUT_COLLECTION}',
dest=constants.GCS_MONGO_OUTPUT_COLLECTION,
required=True,
help='GCS MONGO Output Collection Name'
)
parser.add_argument(
f'--{constants.GCS_MONGO_OUTPUT_MODE}',
dest=constants.GCS_MONGO_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.GCS_MONGO_BATCH_SIZE}',
dest=constants.GCS_MONGO_BATCH_SIZE,
required=False,
default=constants.MONGO_DEFAULT_BATCH_SIZE,
help='GCS MONGO Output Batch Size'
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_location: str = args[constants.GCS_MONGO_INPUT_LOCATION]
input_format: str = args[constants.GCS_MONGO_INPUT_FORMAT]
output_uri:str = args[constants.GCS_MONGO_OUTPUT_URI]
output_database:str = args[constants.GCS_MONGO_OUTPUT_DATABASE]
output_collection:str = args[constants.GCS_MONGO_OUTPUT_COLLECTION]
output_mode:str = args[constants.GCS_MONGO_OUTPUT_MODE]
batch_size:int = args[constants.GCS_MONGO_BATCH_SIZE]
ignore_keys = {constants.GCS_MONGO_OUTPUT_URI}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting GCS to MONGO spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data = ingest_dataframe_from_cloud_storage(spark, args, input_location, input_format, "gcs.mongo.input.")
# Write
input_data.write.format(constants.FORMAT_MONGO)\
.option(constants.MONGO_URL, output_uri) \
.option(constants.MONGO_DATABASE, output_database) \
.option(constants.MONGO_COLLECTION, output_collection) \
.option(constants.MONGO_BATCH_SIZE, batch_size) \
.mode(output_mode) \
.save()