python/dataproc_templates/hive/hive_to_bigquery.py (105 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
__all__ = ['HiveToBigQueryTemplate']
class HiveToBigQueryTemplate(BaseTemplate):
"""
Dataproc template implementing exports from Hive to BigQuery
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.HIVE_BQ_INPUT_DATABASE}',
dest=constants.HIVE_BQ_INPUT_DATABASE,
required=True,
help='Hive database for importing data to BigQuery'
)
parser.add_argument(
f'--{constants.HIVE_BQ_INPUT_TABLE}',
dest=constants.HIVE_BQ_INPUT_TABLE,
required=True,
help='Hive table for importing data to BigQuery'
)
parser.add_argument(
f'--{constants.HIVE_BQ_OUTPUT_DATASET}',
dest=constants.HIVE_BQ_OUTPUT_DATASET,
required=True,
help='BigQuery dataset for the output table'
)
parser.add_argument(
f'--{constants.HIVE_BQ_OUTPUT_TABLE}',
dest=constants.HIVE_BQ_OUTPUT_TABLE,
required=True,
help='BigQuery output table name'
)
parser.add_argument(
f'--{constants.HIVE_BQ_LD_TEMP_BUCKET_NAME}',
dest=constants.HIVE_BQ_LD_TEMP_BUCKET_NAME,
required=True,
help='Spark BigQuery connector temporary bucket'
)
parser.add_argument(
f'--{constants.HIVE_BQ_OUTPUT_MODE}',
dest=constants.HIVE_BQ_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.HIVE_BQ_TEMP_VIEW_NAME}',
dest=constants.HIVE_BQ_TEMP_VIEW_NAME,
required=False,
default="",
help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query'
)
parser.add_argument(
f'--{constants.HIVE_BQ_SQL_QUERY}',
dest=constants.HIVE_BQ_SQL_QUERY,
required=False,
default="",
help='SQL query for data transformation. This must use the temp view name as the table to query from.'
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if getattr(known_args, constants.HIVE_BQ_SQL_QUERY) and not getattr(known_args, constants.HIVE_BQ_TEMP_VIEW_NAME):
sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query')
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
hive_database: str = args[constants.HIVE_BQ_INPUT_DATABASE]
hive_table: str = args[constants.HIVE_BQ_INPUT_TABLE]
bigquery_dataset: str = args[constants.HIVE_BQ_OUTPUT_DATASET]
bigquery_table: str = args[constants.HIVE_BQ_OUTPUT_TABLE]
bq_temp_bucket: str = args[constants.HIVE_BQ_LD_TEMP_BUCKET_NAME]
output_mode: str = args[constants.HIVE_BQ_OUTPUT_MODE]
temp_view: str = args[constants.HIVE_BQ_TEMP_VIEW_NAME]
sql_query: str = args[constants.HIVE_BQ_SQL_QUERY]
logger.info(
"Starting Hive to Bigquery spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Read
input_data = spark.table(hive_database + "." + hive_table)
if sql_query:
# Create temp view on source data
input_data.createGlobalTempView(temp_view)
# Execute SQL
output_data = spark.sql(sql_query)
else:
output_data = input_data
# Write
output_data.write \
.format(constants.FORMAT_BIGQUERY) \
.option(constants.TABLE, bigquery_dataset + "." + bigquery_table) \
.option(constants.TEMP_GCS_BUCKET, bq_temp_bucket) \
.mode(output_mode) \
.save()