python/dataproc_templates/hive/hive_to_gcs.py (108 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrameWriter
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
import dataproc_templates.util.template_constants as constants
__all__ = ['HiveToGCSTemplate']
class HiveToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing exports from Hive to GCS
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.HIVE_GCS_INPUT_DATABASE}',
dest=constants.HIVE_GCS_INPUT_DATABASE,
required=True,
help='Hive database for exporting data to GCS'
)
parser.add_argument(
f'--{constants.HIVE_GCS_INPUT_TABLE}',
dest=constants.HIVE_GCS_INPUT_TABLE,
required=True,
help='Hive table for exporting data to GCS'
)
parser.add_argument(
f'--{constants.HIVE_GCS_OUTPUT_LOCATION}',
dest=constants.HIVE_GCS_OUTPUT_LOCATION,
required=True,
help='Cloud Storage location for output files'
)
parser.add_argument(
f'--{constants.HIVE_GCS_OUTPUT_FORMAT}',
dest=constants.HIVE_GCS_OUTPUT_FORMAT,
required=False,
default=constants.FORMAT_PRQT,
help=(
'Output file format '
'(one of: avro,parquet,csv,json) '
'(Defaults to parquet)'
),
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.HIVE_GCS_OUTPUT_MODE}',
dest=constants.HIVE_GCS_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_OVERWRITE,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to overwrite)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.HIVE_GCS_TEMP_VIEW_NAME}',
dest=constants.HIVE_GCS_TEMP_VIEW_NAME,
required=False,
default="",
help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query'
)
parser.add_argument(
f'--{constants.HIVE_GCS_SQL_QUERY}',
dest=constants.HIVE_GCS_SQL_QUERY,
required=False,
default="",
help='SQL query for data transformation. This must use the temp view name as the table to query from.'
)
add_spark_options(parser, constants.get_csv_output_spark_options("hive.gcs.output."))
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if getattr(known_args, constants.HIVE_GCS_SQL_QUERY) and not getattr(known_args, constants.HIVE_GCS_TEMP_VIEW_NAME):
sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query')
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
hive_database: str = args[constants.HIVE_GCS_INPUT_DATABASE]
hive_table: str = args[constants.HIVE_GCS_INPUT_TABLE]
output_location: str = args[constants.HIVE_GCS_OUTPUT_LOCATION]
output_format: str = args[constants.HIVE_GCS_OUTPUT_FORMAT]
output_mode: str = args[constants.HIVE_GCS_OUTPUT_MODE]
hive_temp_view: str = args[constants.HIVE_GCS_TEMP_VIEW_NAME]
sql_query: str = args[constants.HIVE_GCS_SQL_QUERY]
logger.info(
"Starting Hive to GCS spark job with parameters:\n"
f"{pprint.pformat(args)}"
)
# Read
input_data = spark.table(hive_database + "." + hive_table)
if sql_query:
# Create temp view on source data
input_data.createGlobalTempView(hive_temp_view)
# Execute SQL
output_data = spark.sql(sql_query)
else:
output_data = input_data
writer: DataFrameWriter = output_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "hive.gcs.output.")