python/dataproc_templates/hive/hive_to_gcs.py (108 lines of code) (raw):

# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint import sys from pyspark.sql import SparkSession, DataFrameWriter from dataproc_templates import BaseTemplate from dataproc_templates.util.argument_parsing import add_spark_options from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage import dataproc_templates.util.template_constants as constants __all__ = ['HiveToGCSTemplate'] class HiveToGCSTemplate(BaseTemplate): """ Dataproc template implementing exports from Hive to GCS """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.HIVE_GCS_INPUT_DATABASE}', dest=constants.HIVE_GCS_INPUT_DATABASE, required=True, help='Hive database for exporting data to GCS' ) parser.add_argument( f'--{constants.HIVE_GCS_INPUT_TABLE}', dest=constants.HIVE_GCS_INPUT_TABLE, required=True, help='Hive table for exporting data to GCS' ) parser.add_argument( f'--{constants.HIVE_GCS_OUTPUT_LOCATION}', dest=constants.HIVE_GCS_OUTPUT_LOCATION, required=True, help='Cloud Storage location for output files' ) parser.add_argument( f'--{constants.HIVE_GCS_OUTPUT_FORMAT}', dest=constants.HIVE_GCS_OUTPUT_FORMAT, required=False, default=constants.FORMAT_PRQT, help=( 'Output file format ' '(one of: avro,parquet,csv,json) ' '(Defaults to parquet)' ), choices=[ constants.FORMAT_AVRO, constants.FORMAT_PRQT, constants.FORMAT_CSV, constants.FORMAT_JSON ] ) parser.add_argument( f'--{constants.HIVE_GCS_OUTPUT_MODE}', dest=constants.HIVE_GCS_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_OVERWRITE, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to overwrite)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.HIVE_GCS_TEMP_VIEW_NAME}', dest=constants.HIVE_GCS_TEMP_VIEW_NAME, required=False, default="", help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query' ) parser.add_argument( f'--{constants.HIVE_GCS_SQL_QUERY}', dest=constants.HIVE_GCS_SQL_QUERY, required=False, default="", help='SQL query for data transformation. This must use the temp view name as the table to query from.' ) add_spark_options(parser, constants.get_csv_output_spark_options("hive.gcs.output.")) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) if getattr(known_args, constants.HIVE_GCS_SQL_QUERY) and not getattr(known_args, constants.HIVE_GCS_TEMP_VIEW_NAME): sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query') return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments hive_database: str = args[constants.HIVE_GCS_INPUT_DATABASE] hive_table: str = args[constants.HIVE_GCS_INPUT_TABLE] output_location: str = args[constants.HIVE_GCS_OUTPUT_LOCATION] output_format: str = args[constants.HIVE_GCS_OUTPUT_FORMAT] output_mode: str = args[constants.HIVE_GCS_OUTPUT_MODE] hive_temp_view: str = args[constants.HIVE_GCS_TEMP_VIEW_NAME] sql_query: str = args[constants.HIVE_GCS_SQL_QUERY] logger.info( "Starting Hive to GCS spark job with parameters:\n" f"{pprint.pformat(args)}" ) # Read input_data = spark.table(hive_database + "." + hive_table) if sql_query: # Create temp view on source data input_data.createGlobalTempView(hive_temp_view) # Execute SQL output_data = spark.sql(sql_query) else: output_data = input_data writer: DataFrameWriter = output_data.write.mode(output_mode) persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "hive.gcs.output.")