python/dataproc_templates/jdbc/jdbc_to_bigquery.py (171 lines of code) (raw):

# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrame, DataFrameWriter from dataproc_templates import BaseTemplate import dataproc_templates.util.template_constants as constants import dataproc_templates.util.secret_manager as secret_manager __all__ = ['JDBCToBigQueryTemplate'] class JDBCToBigQueryTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into BigQuery """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.JDBC_BQ_OUTPUT_DATASET}', dest=constants.JDBC_BQ_OUTPUT_DATASET, required=True, help='BigQuery dataset for the output table' ) parser.add_argument( f'--{constants.JDBC_BQ_OUTPUT_TABLE}', dest=constants.JDBC_BQ_OUTPUT_TABLE, required=True, help='BigQuery output table name' ) parser.add_argument( f'--{constants.JDBC_BQ_LD_TEMP_BUCKET_NAME}', dest=constants.JDBC_BQ_LD_TEMP_BUCKET_NAME, required=True, help='Spark BigQuery connector temporary bucket' ) group = parser.add_mutually_exclusive_group(required=True) group.add_argument( f'--{constants.JDBC_BQ_INPUT_URL}', dest=constants.JDBC_BQ_INPUT_URL, required=False, default="", help='JDBC input URL' ) group.add_argument( f'--{constants.JDBC_BQ_INPUT_URL_SECRET}', dest=constants.JDBC_BQ_INPUT_URL_SECRET, required=False, default="", help='JDBC input URL secret name' ) parser.add_argument( f'--{constants.JDBC_BQ_INPUT_DRIVER}', dest=constants.JDBC_BQ_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBC_BQ_INPUT_TABLE}', dest=constants.JDBC_BQ_INPUT_TABLE, required=True, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBC_BQ_INPUT_PARTITIONCOLUMN}', dest=constants.JDBC_BQ_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBC_BQ_INPUT_LOWERBOUND}', dest=constants.JDBC_BQ_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBC_BQ_INPUT_UPPERBOUND}', dest=constants.JDBC_BQ_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBC_BQ_NUMPARTITIONS}', dest=constants.JDBC_BQ_NUMPARTITIONS, required=False, default="10", help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBC_BQ_INPUT_FETCHSIZE}', dest=constants.JDBC_BQ_INPUT_FETCHSIZE, required=False, default=0, type=int, help='Determines how many rows to fetch per round trip' ) parser.add_argument( f'--{constants.JDBC_BQ_SESSIONINITSTATEMENT}', dest=constants.JDBC_BQ_SESSIONINITSTATEMENT, required=False, default="", help='Custom SQL statement to execute in each reader database session' ) parser.add_argument( f'--{constants.JDBC_BQ_OUTPUT_MODE}', dest=constants.JDBC_BQ_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments big_query_dataset: str = args[constants.JDBC_BQ_OUTPUT_DATASET] big_query_table: str = args[constants.JDBC_BQ_OUTPUT_TABLE] bq_temp_bucket: str = args[constants.JDBC_BQ_LD_TEMP_BUCKET_NAME] #check if secret is passed or the connection string in the agruments if str(args[constants.JDBC_BQ_INPUT_URL])=="": input_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBC_BQ_INPUT_URL_SECRET]) else: input_jdbc_url: str = args[constants.JDBC_BQ_INPUT_URL] input_jdbc_driver: str = args[constants.JDBC_BQ_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBC_BQ_INPUT_TABLE] input_jdbc_partitioncolumn: str = args[constants.JDBC_BQ_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBC_BQ_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBC_BQ_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBC_BQ_NUMPARTITIONS] input_jdbc_fetchsize: int = args[constants.JDBC_BQ_INPUT_FETCHSIZE] input_jdbc_sessioninitstatement: str = args[constants.JDBC_BQ_SESSIONINITSTATEMENT] output_mode: str = args[constants.JDBC_BQ_OUTPUT_MODE] ignore_keys = {constants.JDBC_BQ_INPUT_URL} filtered_args = {key:val for key,val in args.items() if key not in ignore_keys} logger.info( "Starting JDBC to BigQuery Spark job with parameters:\n" f"{pprint.pformat(filtered_args)}" ) # Read input_data: DataFrame partition_parameters = str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctogcs.input.partitioncolumn,jdbctogcs.input.lowerbound,jdbctogcs.input.upperbound. Refer to README.md for more instructions.") exit (1) properties = {constants.JDBC_URL: input_jdbc_url, constants.JDBC_DRIVER: input_jdbc_driver, constants.JDBC_TABLE: input_jdbc_table, constants.JDBC_NUMPARTITIONS: jdbc_numpartitions, constants.JDBC_FETCHSIZE: input_jdbc_fetchsize} if input_jdbc_sessioninitstatement: properties[constants.JDBC_SESSIONINITSTATEMENT] = input_jdbc_sessioninitstatement if partition_parameters: properties.update({constants.JDBC_PARTITIONCOLUMN: input_jdbc_partitioncolumn, constants.JDBC_LOWERBOUND: input_jdbc_lowerbound, constants.JDBC_UPPERBOUND: input_jdbc_upperbound}) input_data = spark.read \ .format(constants.FORMAT_JDBC) \ .options(**properties) \ .load() # Write input_data.write \ .format(constants.FORMAT_BIGQUERY) \ .option(constants.TABLE, big_query_dataset + "." + big_query_table) \ .option(constants.GCS_BQ_TEMP_BUCKET, bq_temp_bucket) \ .mode(output_mode) \ .save()