python/dataproc_templates/jdbc/jdbc_to_gcs.py (219 lines of code) (raw):

# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint import sys from pyspark.sql import SparkSession, DataFrame, DataFrameWriter from dataproc_templates import BaseTemplate from dataproc_templates.util.argument_parsing import add_spark_options from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage import dataproc_templates.util.template_constants as constants import dataproc_templates.util.secret_manager as secret_manager __all__ = ['JDBCToGCSTemplate'] class JDBCToGCSTemplate(BaseTemplate): """ Dataproc template implementing loads from JDBC into Cloud Storage """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group(required=True) group.add_argument( f'--{constants.JDBCTOGCS_INPUT_URL}', dest=constants.JDBCTOGCS_INPUT_URL, required=False, default="", help='JDBC input URL' ) group.add_argument( f'--{constants.JDBCTOGCS_INPUT_URL_SECRET}', dest=constants.JDBCTOGCS_INPUT_URL_SECRET, required=False, default="", help='JDBC input URL secret name' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_DRIVER}', dest=constants.JDBCTOGCS_INPUT_DRIVER, required=True, help='JDBC input driver name' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_TABLE}', dest=constants.JDBCTOGCS_INPUT_TABLE, required=False, help='JDBC input table name' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_SQL_QUERY}', dest=constants.JDBCTOGCS_INPUT_SQL_QUERY, required=False, help='JDBC input SQL query' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN, required=False, default="", help='JDBC input table partition column name' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_LOWERBOUND}', dest=constants.JDBCTOGCS_INPUT_LOWERBOUND, required=False, default="", help='JDBC input table partition column lower bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_UPPERBOUND}', dest=constants.JDBCTOGCS_INPUT_UPPERBOUND, required=False, default="", help='JDBC input table partition column upper bound which is used to decide the partition stride' ) parser.add_argument( f'--{constants.JDBCTOGCS_NUMPARTITIONS}', dest=constants.JDBCTOGCS_NUMPARTITIONS, required=False, default="10", help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10' ) parser.add_argument( f'--{constants.JDBCTOGCS_INPUT_FETCHSIZE}', dest=constants.JDBCTOGCS_INPUT_FETCHSIZE, required=False, default=0, type=int, help='Determines how many rows to fetch per round trip' ) parser.add_argument( f'--{constants.JDBCTOGCS_SESSIONINITSTATEMENT}', dest=constants.JDBCTOGCS_SESSIONINITSTATEMENT, required=False, default="", help='Custom SQL statement to execute in each reader database session' ) parser.add_argument( f'--{constants.JDBCTOGCS_OUTPUT_LOCATION}', dest=constants.JDBCTOGCS_OUTPUT_LOCATION, required=True, help='Cloud Storage location for output files' ) parser.add_argument( f'--{constants.JDBCTOGCS_OUTPUT_FORMAT}', dest=constants.JDBCTOGCS_OUTPUT_FORMAT, required=True, help='Output file format (one of: avro,parquet,csv,json)', choices=[ constants.FORMAT_AVRO, constants.FORMAT_PRQT, constants.FORMAT_CSV, constants.FORMAT_JSON ] ) parser.add_argument( f'--{constants.JDBCTOGCS_OUTPUT_MODE}', dest=constants.JDBCTOGCS_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN}', dest=constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN, required=False, default="", help='Cloud Storage partition column name' ) parser.add_argument( f'--{constants.JDBCTOGCS_TEMP_VIEW_NAME}', dest=constants.JDBCTOGCS_TEMP_VIEW_NAME, required=False, default="", help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query' ) parser.add_argument( f'--{constants.JDBCTOGCS_TEMP_SQL_QUERY}', dest=constants.JDBCTOGCS_TEMP_SQL_QUERY, required=False, default="", help='SQL query for data transformation. This must use the temp view name as the table to query from.' ) add_spark_options(parser, constants.get_csv_output_spark_options("jdbc.gcs.output.")) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) if getattr(known_args, constants.JDBCTOGCS_INPUT_TABLE) and getattr(known_args, constants.JDBCTOGCS_INPUT_SQL_QUERY): sys.exit('ArgumentParser Error: Arguments cannot have both input table and sql query, use either one.') if getattr(known_args, constants.JDBCTOGCS_TEMP_SQL_QUERY) and not getattr(known_args, constants.JDBCTOGCS_TEMP_VIEW_NAME): sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query') return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments #check if secret is passed or the connection string in URL #check if secret is passed or the connection string in the agruments if str(args[constants.JDBCTOGCS_INPUT_URL])=="": input_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBCTOGCS_INPUT_URL_SECRET]) else: input_jdbc_url: str = args[constants.JDBCTOGCS_INPUT_URL] input_jdbc_driver: str = args[constants.JDBCTOGCS_INPUT_DRIVER] input_jdbc_table: str = args[constants.JDBCTOGCS_INPUT_TABLE] input_jdbc_sql_query: str = args[constants.JDBCTOGCS_INPUT_SQL_QUERY] input_jdbc_partitioncolumn: str = args[constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN] input_jdbc_lowerbound: str = args[constants.JDBCTOGCS_INPUT_LOWERBOUND] input_jdbc_upperbound: str = args[constants.JDBCTOGCS_INPUT_UPPERBOUND] jdbc_numpartitions: str = args[constants.JDBCTOGCS_NUMPARTITIONS] input_jdbc_fetchsize: int = args[constants.JDBCTOGCS_INPUT_FETCHSIZE] input_jdbc_sessioninitstatement: str = args[constants.JDBCTOGCS_SESSIONINITSTATEMENT] output_location: str = args[constants.JDBCTOGCS_OUTPUT_LOCATION] output_format: str = args[constants.JDBCTOGCS_OUTPUT_FORMAT] output_mode: str = args[constants.JDBCTOGCS_OUTPUT_MODE] output_partitioncolumn: str = args[constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN] temp_view: str = args[constants.JDBCTOGCS_TEMP_VIEW_NAME] temp_sql_query:str = args[constants.JDBCTOGCS_TEMP_SQL_QUERY] ignore_keys = {constants.JDBCTOGCS_INPUT_URL} filtered_args = {key:val for key,val in args.items() if key not in ignore_keys} logger.info( "Starting JDBC to Cloud Storage Spark job with parameters:\n" f"{pprint.pformat(filtered_args)}" ) # Read input_data: DataFrame read_properties = {constants.JDBC_URL: input_jdbc_url, constants.JDBC_DRIVER: input_jdbc_driver} if input_jdbc_table: read_properties.update({constants.JDBC_TABLE: input_jdbc_table}) elif input_jdbc_sql_query: read_properties.update({constants.JDBC_QUERY: input_jdbc_sql_query}) else: logger.error("Arguments must have either input table or input SQL query") exit(1) read_properties.update({constants.JDBC_NUMPARTITIONS: jdbc_numpartitions, constants.JDBC_FETCHSIZE: input_jdbc_fetchsize}) if input_jdbc_sessioninitstatement: read_properties[constants.JDBC_SESSIONINITSTATEMENT] = input_jdbc_sessioninitstatement partition_parameters = str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound) if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))): logger.error("Set all the sql partitioning parameters together-jdbctogcs.input.partitioncolumn,jdbctogcs.input.lowerbound,jdbctogcs.input.upperbound. Refer to README.md for more instructions.") exit(1) if partition_parameters: read_properties.update({constants.JDBC_PARTITIONCOLUMN: input_jdbc_partitioncolumn, constants.JDBC_LOWERBOUND: input_jdbc_lowerbound, constants.JDBC_UPPERBOUND: input_jdbc_upperbound}) input_data = spark.read \ .format(constants.FORMAT_JDBC) \ .options(**read_properties) \ .load() if temp_sql_query: # Create temp view on source data input_data.createGlobalTempView(temp_view) # Execute SQL output_data = spark.sql(temp_sql_query) else: output_data = input_data # Write if (output_partitioncolumn != ""): writer: DataFrameWriter = output_data.write.mode(output_mode).partitionBy(output_partitioncolumn) else: writer: DataFrameWriter = output_data.write.mode(output_mode) persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "jdbc.gcs.output.")