python/dataproc_templates/jdbc/jdbc_to_gcs.py (219 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrame, DataFrameWriter
from dataproc_templates import BaseTemplate
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage
import dataproc_templates.util.template_constants as constants
import dataproc_templates.util.secret_manager as secret_manager
__all__ = ['JDBCToGCSTemplate']
class JDBCToGCSTemplate(BaseTemplate):
"""
Dataproc template implementing loads from JDBC into Cloud Storage
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
f'--{constants.JDBCTOGCS_INPUT_URL}',
dest=constants.JDBCTOGCS_INPUT_URL,
required=False,
default="",
help='JDBC input URL'
)
group.add_argument(
f'--{constants.JDBCTOGCS_INPUT_URL_SECRET}',
dest=constants.JDBCTOGCS_INPUT_URL_SECRET,
required=False,
default="",
help='JDBC input URL secret name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_DRIVER}',
dest=constants.JDBCTOGCS_INPUT_DRIVER,
required=True,
help='JDBC input driver name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_TABLE}',
dest=constants.JDBCTOGCS_INPUT_TABLE,
required=False,
help='JDBC input table name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_SQL_QUERY}',
dest=constants.JDBCTOGCS_INPUT_SQL_QUERY,
required=False,
help='JDBC input SQL query'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN}',
dest=constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN,
required=False,
default="",
help='JDBC input table partition column name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_LOWERBOUND}',
dest=constants.JDBCTOGCS_INPUT_LOWERBOUND,
required=False,
default="",
help='JDBC input table partition column lower bound which is used to decide the partition stride'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_UPPERBOUND}',
dest=constants.JDBCTOGCS_INPUT_UPPERBOUND,
required=False,
default="",
help='JDBC input table partition column upper bound which is used to decide the partition stride'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_NUMPARTITIONS}',
dest=constants.JDBCTOGCS_NUMPARTITIONS,
required=False,
default="10",
help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_INPUT_FETCHSIZE}',
dest=constants.JDBCTOGCS_INPUT_FETCHSIZE,
required=False,
default=0,
type=int,
help='Determines how many rows to fetch per round trip'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_SESSIONINITSTATEMENT}',
dest=constants.JDBCTOGCS_SESSIONINITSTATEMENT,
required=False,
default="",
help='Custom SQL statement to execute in each reader database session'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_LOCATION}',
dest=constants.JDBCTOGCS_OUTPUT_LOCATION,
required=True,
help='Cloud Storage location for output files'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_FORMAT}',
dest=constants.JDBCTOGCS_OUTPUT_FORMAT,
required=True,
help='Output file format (one of: avro,parquet,csv,json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_MODE}',
dest=constants.JDBCTOGCS_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN}',
dest=constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN,
required=False,
default="",
help='Cloud Storage partition column name'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_TEMP_VIEW_NAME}',
dest=constants.JDBCTOGCS_TEMP_VIEW_NAME,
required=False,
default="",
help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_TEMP_SQL_QUERY}',
dest=constants.JDBCTOGCS_TEMP_SQL_QUERY,
required=False,
default="",
help='SQL query for data transformation. This must use the temp view name as the table to query from.'
)
add_spark_options(parser, constants.get_csv_output_spark_options("jdbc.gcs.output."))
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if getattr(known_args, constants.JDBCTOGCS_INPUT_TABLE) and getattr(known_args, constants.JDBCTOGCS_INPUT_SQL_QUERY):
sys.exit('ArgumentParser Error: Arguments cannot have both input table and sql query, use either one.')
if getattr(known_args, constants.JDBCTOGCS_TEMP_SQL_QUERY) and not getattr(known_args, constants.JDBCTOGCS_TEMP_VIEW_NAME):
sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query')
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
#check if secret is passed or the connection string in URL
#check if secret is passed or the connection string in the agruments
if str(args[constants.JDBCTOGCS_INPUT_URL])=="":
input_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBCTOGCS_INPUT_URL_SECRET])
else:
input_jdbc_url: str = args[constants.JDBCTOGCS_INPUT_URL]
input_jdbc_driver: str = args[constants.JDBCTOGCS_INPUT_DRIVER]
input_jdbc_table: str = args[constants.JDBCTOGCS_INPUT_TABLE]
input_jdbc_sql_query: str = args[constants.JDBCTOGCS_INPUT_SQL_QUERY]
input_jdbc_partitioncolumn: str = args[constants.JDBCTOGCS_INPUT_PARTITIONCOLUMN]
input_jdbc_lowerbound: str = args[constants.JDBCTOGCS_INPUT_LOWERBOUND]
input_jdbc_upperbound: str = args[constants.JDBCTOGCS_INPUT_UPPERBOUND]
jdbc_numpartitions: str = args[constants.JDBCTOGCS_NUMPARTITIONS]
input_jdbc_fetchsize: int = args[constants.JDBCTOGCS_INPUT_FETCHSIZE]
input_jdbc_sessioninitstatement: str = args[constants.JDBCTOGCS_SESSIONINITSTATEMENT]
output_location: str = args[constants.JDBCTOGCS_OUTPUT_LOCATION]
output_format: str = args[constants.JDBCTOGCS_OUTPUT_FORMAT]
output_mode: str = args[constants.JDBCTOGCS_OUTPUT_MODE]
output_partitioncolumn: str = args[constants.JDBCTOGCS_OUTPUT_PARTITIONCOLUMN]
temp_view: str = args[constants.JDBCTOGCS_TEMP_VIEW_NAME]
temp_sql_query:str = args[constants.JDBCTOGCS_TEMP_SQL_QUERY]
ignore_keys = {constants.JDBCTOGCS_INPUT_URL}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting JDBC to Cloud Storage Spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data: DataFrame
read_properties = {constants.JDBC_URL: input_jdbc_url,
constants.JDBC_DRIVER: input_jdbc_driver}
if input_jdbc_table:
read_properties.update({constants.JDBC_TABLE: input_jdbc_table})
elif input_jdbc_sql_query:
read_properties.update({constants.JDBC_QUERY: input_jdbc_sql_query})
else:
logger.error("Arguments must have either input table or input SQL query")
exit(1)
read_properties.update({constants.JDBC_NUMPARTITIONS: jdbc_numpartitions,
constants.JDBC_FETCHSIZE: input_jdbc_fetchsize})
if input_jdbc_sessioninitstatement:
read_properties[constants.JDBC_SESSIONINITSTATEMENT] = input_jdbc_sessioninitstatement
partition_parameters = str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound)
if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))):
logger.error("Set all the sql partitioning parameters together-jdbctogcs.input.partitioncolumn,jdbctogcs.input.lowerbound,jdbctogcs.input.upperbound. Refer to README.md for more instructions.")
exit(1)
if partition_parameters:
read_properties.update({constants.JDBC_PARTITIONCOLUMN: input_jdbc_partitioncolumn,
constants.JDBC_LOWERBOUND: input_jdbc_lowerbound,
constants.JDBC_UPPERBOUND: input_jdbc_upperbound})
input_data = spark.read \
.format(constants.FORMAT_JDBC) \
.options(**read_properties) \
.load()
if temp_sql_query:
# Create temp view on source data
input_data.createGlobalTempView(temp_view)
# Execute SQL
output_data = spark.sql(temp_sql_query)
else:
output_data = input_data
# Write
if (output_partitioncolumn != ""):
writer: DataFrameWriter = output_data.write.mode(output_mode).partitionBy(output_partitioncolumn)
else:
writer: DataFrameWriter = output_data.write.mode(output_mode)
persist_dataframe_to_cloud_storage(writer, args, output_location, output_format, "jdbc.gcs.output.")