python/dataproc_templates/jdbc/jdbc_to_jdbc.py (227 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
import sys
from pyspark.sql import SparkSession, DataFrame
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
import dataproc_templates.util.secret_manager as secret_manager
__all__ = ['JDBCToJDBCTemplate']
class JDBCToJDBCTemplate(BaseTemplate):
"""
Dataproc template implementing loads from JDBC into JDBC
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
groupinput = parser.add_mutually_exclusive_group(required=True)
groupinput.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_URL}',
dest=constants.JDBCTOJDBC_INPUT_URL,
required=False,
default="",
help='JDBC input URL'
)
groupinput.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_URL_SECRET}',
dest=constants.JDBCTOJDBC_INPUT_URL_SECRET,
required=False,
default="",
help='JDBC input URL secret name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_DRIVER}',
dest=constants.JDBCTOJDBC_INPUT_DRIVER,
required=True,
help='JDBC input driver name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_TABLE}',
dest=constants.JDBCTOJDBC_INPUT_TABLE,
required=True,
help='JDBC input table name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN}',
dest=constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN,
required=False,
default="",
help='JDBC input table partition column name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_LOWERBOUND}',
dest=constants.JDBCTOJDBC_INPUT_LOWERBOUND,
required=False,
default="",
help='JDBC input table partition column lower bound which is used to decide the partition stride'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_UPPERBOUND}',
dest=constants.JDBCTOJDBC_INPUT_UPPERBOUND,
required=False,
default="",
help='JDBC input table partition column upper bound which is used to decide the partition stride'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_NUMPARTITIONS}',
dest=constants.JDBCTOJDBC_NUMPARTITIONS,
required=False,
default="10",
help='The maximum number of partitions that can be used for parallelism in table reading and writing. Default set to 10'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_INPUT_FETCHSIZE}',
dest=constants.JDBCTOJDBC_INPUT_FETCHSIZE,
required=False,
default=0,
type=int,
help='Determines how many rows to fetch per round trip'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_SESSIONINITSTATEMENT}',
dest=constants.JDBCTOJDBC_SESSIONINITSTATEMENT,
required=False,
default="",
help='Custom SQL statement to execute in each reader database session'
)
groupoutput = parser.add_mutually_exclusive_group(required=True)
groupoutput.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_URL}',
dest=constants.JDBCTOJDBC_OUTPUT_URL,
required=False,
default="",
help='JDBC input URL'
)
groupoutput.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_URL_SECRET}',
dest=constants.JDBCTOJDBC_OUTPUT_URL_SECRET,
required=False,
default="",
help='JDBC input URL secret name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_DRIVER}',
dest=constants.JDBCTOJDBC_OUTPUT_DRIVER,
required=True,
help='JDBC output driver name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_TABLE}',
dest=constants.JDBCTOJDBC_OUTPUT_TABLE,
required=True,
help='JDBC output table name'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION}',
dest=constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION,
required=False,
default="",
help='This option allows setting of database-specific table and partition options when creating a output table'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_MODE}',
dest=constants.JDBCTOJDBC_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE}',
dest=constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE,
required=False,
default="1000",
help='JDBC output batch size. Default set to 1000'
)
parser.add_argument(
f'--{constants.JDBCTOGCS_TEMP_VIEW_NAME}',
dest=constants.JDBCTOGCS_TEMP_VIEW_NAME,
required=False,
default="",
help='Temp view name for creating a spark sql view on source data. This name has to match with the table name that will be used in the SQL query'
)
parser.add_argument(
f'--{constants.JDBCTOJDBC_SQL_QUERY}',
dest=constants.JDBCTOJDBC_SQL_QUERY,
required=False,
default="",
help='SQL query for data transformation. This must use the temp view name as the table to query from.'
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
if getattr(known_args, constants.JDBCTOJDBC_SQL_QUERY) and not getattr(known_args, constants.JDBCTOGCS_TEMP_VIEW_NAME):
sys.exit('ArgumentParser Error: Temp view name cannot be null if you want to do data transformations with query')
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
#check if secret is passed or the connection string in URL
if str(args[constants.JDBCTOJDBC_INPUT_URL])=="":
input_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBCTOJDBC_INPUT_URL_SECRET])
else:
input_jdbc_url: str = args[constants.JDBCTOJDBC_INPUT_URL]
input_jdbc_driver: str = args[constants.JDBCTOJDBC_INPUT_DRIVER]
input_jdbc_table: str = args[constants.JDBCTOJDBC_INPUT_TABLE]
input_jdbc_partitioncolumn: str = args[constants.JDBCTOJDBC_INPUT_PARTITIONCOLUMN]
input_jdbc_lowerbound: str = args[constants.JDBCTOJDBC_INPUT_LOWERBOUND]
input_jdbc_upperbound: str = args[constants.JDBCTOJDBC_INPUT_UPPERBOUND]
jdbc_numpartitions: str = args[constants.JDBCTOJDBC_NUMPARTITIONS]
input_jdbc_fetchsize: int = args[constants.JDBCTOJDBC_INPUT_FETCHSIZE]
input_jdbc_sessioninitstatement: str = args[constants.JDBCTOJDBC_SESSIONINITSTATEMENT]
#check if secret is passed or the connection string in URL
if str(args[constants.JDBCTOJDBC_OUTPUT_URL])=="":
output_jdbc_url: str = secret_manager.access_secret_version(args[constants.JDBCTOJDBC_OUTPUT_URL_SECRET])
else:
output_jdbc_url: str = args[constants.JDBCTOJDBC_OUTPUT_URL]
output_jdbc_driver: str = args[constants.JDBCTOJDBC_OUTPUT_DRIVER]
output_jdbc_table: str = args[constants.JDBCTOJDBC_OUTPUT_TABLE]
output_jdbc_create_table_option: str = args[constants.JDBCTOJDBC_OUTPUT_CREATE_TABLE_OPTION]
output_jdbc_mode: str = args[constants.JDBCTOJDBC_OUTPUT_MODE]
output_jdbc_batch_size: int = args[constants.JDBCTOJDBC_OUTPUT_BATCH_SIZE]
temp_view: str = args[constants.JDBCTOGCS_TEMP_VIEW_NAME]
sql_query: str = args[constants.JDBCTOJDBC_SQL_QUERY]
ignore_keys = {constants.JDBCTOJDBC_INPUT_URL, constants.JDBCTOJDBC_OUTPUT_URL}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting JDBC to JDBC spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data: DataFrame
partition_parameters = str(input_jdbc_partitioncolumn) + str(input_jdbc_lowerbound) + str(input_jdbc_upperbound)
if ((partition_parameters != "") & ((input_jdbc_partitioncolumn == "") | (input_jdbc_lowerbound == "") | (input_jdbc_upperbound == ""))):
logger.error("Set all the sql partitioning parameters together-jdbctojdbc.input.partitioncolumn,jdbctojdbc.input.lowerbound,jdbctojdbc.input.upperbound. Refer to README.md for more instructions.")
exit (1)
properties = {constants.JDBC_URL: input_jdbc_url,
constants.JDBC_DRIVER: input_jdbc_driver,
constants.JDBC_TABLE: input_jdbc_table,
constants.JDBC_NUMPARTITIONS: jdbc_numpartitions,
constants.JDBC_FETCHSIZE: input_jdbc_fetchsize}
if input_jdbc_sessioninitstatement:
properties[constants.JDBC_SESSIONINITSTATEMENT] = input_jdbc_sessioninitstatement
if partition_parameters:
properties.update({constants.JDBC_PARTITIONCOLUMN: input_jdbc_partitioncolumn,
constants.JDBC_LOWERBOUND: input_jdbc_lowerbound,
constants.JDBC_UPPERBOUND: input_jdbc_upperbound})
input_data = spark.read \
.format(constants.FORMAT_JDBC) \
.options(**properties) \
.load()
if sql_query:
# Create temp view on source data
input_data.createGlobalTempView(temp_view)
# Execute SQL
output_data = spark.sql(sql_query)
else:
output_data = input_data
# Write
output_data.write \
.format(constants.FORMAT_JDBC) \
.option(constants.JDBC_URL, output_jdbc_url) \
.option(constants.JDBC_DRIVER, output_jdbc_driver) \
.option(constants.JDBC_TABLE, output_jdbc_table) \
.option(constants.JDBC_CREATE_TABLE_OPTIONS, output_jdbc_create_table_option) \
.option(constants.JDBC_BATCH_SIZE, output_jdbc_batch_size) \
.option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \
.mode(output_jdbc_mode) \
.save()