python/dataproc_templates/mongo/mongo_to_bq.py (98 lines of code) (raw):

# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, Sequence, Optional, Any from logging import Logger import argparse import pprint from pyspark.sql import SparkSession, DataFrameWriter from dataproc_templates import BaseTemplate from dataproc_templates.util.argument_parsing import add_spark_options from dataproc_templates.util.dataframe_writer_wrappers import persist_dataframe_to_cloud_storage import dataproc_templates.util.template_constants as constants __all__ = ['MongoToBigQueryTemplate'] class MongoToBigQueryTemplate(BaseTemplate): """ Dataproc template implementing exports from Mongo to BigQuery """ @staticmethod def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]: parser: argparse.ArgumentParser = argparse.ArgumentParser() parser.add_argument( f'--{constants.MONGO_BQ_INPUT_URI}', dest=constants.MONGO_BQ_INPUT_URI, required=True, help='Mongo Input Connection Uri' ) parser.add_argument( f'--{constants.MONGO_BQ_INPUT_DATABASE}', dest=constants.MONGO_BQ_INPUT_DATABASE, required=True, help='Mongo Input Database Name' ) parser.add_argument( f'--{constants.MONGO_BQ_INPUT_COLLECTION}', dest=constants.MONGO_BQ_INPUT_COLLECTION, required=True, help='Mongo Input Collection Name' ) parser.add_argument( f'--{constants.MONGO_BQ_OUTPUT_DATASET}', dest=constants.MONGO_BQ_OUTPUT_DATASET, required=True, help='BigQuery Output Dataset Name' ) parser.add_argument( f'--{constants.MONGO_BQ_OUTPUT_TABLE}', dest=constants.MONGO_BQ_OUTPUT_TABLE, required=True, help='BigQuery Output Table Name' ) parser.add_argument( f'--{constants.MONGO_BQ_OUTPUT_MODE}', dest=constants.MONGO_BQ_OUTPUT_MODE, required=False, default=constants.OUTPUT_MODE_APPEND, help=( 'BigQuery Output write mode ' '(one of: append,overwrite,ignore,errorifexists) ' '(Defaults to append)' ), choices=[ constants.OUTPUT_MODE_OVERWRITE, constants.OUTPUT_MODE_APPEND, constants.OUTPUT_MODE_IGNORE, constants.OUTPUT_MODE_ERRORIFEXISTS ] ) parser.add_argument( f'--{constants.MONGO_BQ_TEMP_BUCKET_NAME}', dest=constants.MONGO_BQ_TEMP_BUCKET_NAME, required=True, help='GCS Temp Bucket Name' ) known_args: argparse.Namespace known_args, _ = parser.parse_known_args(args) return vars(known_args) def run(self, spark: SparkSession, args: Dict[str, Any]) -> None: logger: Logger = self.get_logger(spark=spark) # Arguments input_uri: str = args[constants.MONGO_BQ_INPUT_URI] input_database: str = args[constants.MONGO_BQ_INPUT_DATABASE] input_collection: str = args[constants.MONGO_BQ_INPUT_COLLECTION] output_mode: str = args[constants.MONGO_BQ_OUTPUT_MODE] big_query_output_dataset: str = args[constants.MONGO_BQ_OUTPUT_DATASET] big_query_output_table: str = args[constants.MONGO_BQ_OUTPUT_TABLE] big_query_temp_bucket: str = args[constants.MONGO_BQ_TEMP_BUCKET_NAME] ignore_keys = {constants.MONGO_BQ_INPUT_URI} filtered_args = {key: val for key, val in args.items() if key not in ignore_keys} logger.info( "Starting Mongo to Big Query Spark job with parameters:\n" f"{pprint.pformat(filtered_args)}" ) # Read input_data = spark.read \ .format(constants.FORMAT_MONGO) \ .option(constants.MONGO_INPUT_URI, input_uri) \ .option(constants.MONGO_DATABASE, input_database) \ .option(constants.MONGO_COLLECTION, input_collection) \ .load() # Write input_data.write \ .format(constants.FORMAT_BIGQUERY) \ .option(constants.TABLE, big_query_output_dataset + "." + big_query_output_table) \ .option(constants.TEMP_GCS_BUCKET, big_query_temp_bucket) \ .mode(output_mode) \ .save()