python/dataproc_templates/s3/s3_to_bigquery.py (125 lines of code) (raw):
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession, DataFrame
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
__all__ = ['S3ToBigQueryTemplate']
class S3ToBigQueryTemplate(BaseTemplate):
"""
Dataproc template implementing exports from Amazon S3 to BigQuery
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.S3_BQ_INPUT_LOCATION}',
dest=constants.S3_BQ_INPUT_LOCATION,
required=True,
help='Amazon S3 input location. Input location must begin with s3a://'
)
parser.add_argument(
f'--{constants.S3_BQ_ACCESS_KEY}',
dest=constants.S3_BQ_ACCESS_KEY,
required=True,
help='Access key to access Amazon S3 bucket'
)
parser.add_argument(
f'--{constants.S3_BQ_SECRET_KEY}',
dest=constants.S3_BQ_SECRET_KEY,
required=True,
help='Secret key to access Amazon S3 bucket'
)
parser.add_argument(
f'--{constants.S3_BQ_INPUT_FORMAT}',
dest=constants.S3_BQ_INPUT_FORMAT,
required=True,
help='Input file format in Amazon S3 bucket (one of : avro, parquet, csv, json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.S3_BQ_OUTPUT_DATASET_NAME}',
dest=constants.S3_BQ_OUTPUT_DATASET_NAME,
required=True,
help='BigQuery dataset for the output table'
)
parser.add_argument(
f'--{constants.S3_BQ_OUTPUT_TABLE_NAME}',
dest=constants.S3_BQ_OUTPUT_TABLE_NAME,
required=True,
help='BigQuery output table name'
)
parser.add_argument(
f'--{constants.S3_BQ_TEMP_BUCKET_NAME}',
dest=constants.S3_BQ_TEMP_BUCKET_NAME,
required=True,
help='Pre existing GCS bucket name where temporary files are staged'
)
parser.add_argument(
f'--{constants.S3_BQ_OUTPUT_MODE}',
dest=constants.S3_BQ_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists)'
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_file_location: str = args[constants.S3_BQ_INPUT_LOCATION]
access_key: str = args[constants.S3_BQ_ACCESS_KEY]
secret_key: str = args[constants.S3_BQ_SECRET_KEY]
input_file_format: str = args[constants.S3_BQ_INPUT_FORMAT]
bq_dataset: str = args[constants.S3_BQ_OUTPUT_DATASET_NAME]
bq_table: str = args[constants.S3_BQ_OUTPUT_TABLE_NAME]
bq_temp_bucket: str = args[constants.S3_BQ_TEMP_BUCKET_NAME]
output_mode: str = args[constants.S3_BQ_OUTPUT_MODE]
ignore_keys = {constants.S3_BQ_ACCESS_KEY, constants.S3_BQ_SECRET_KEY}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting Amazon S3 to Bigquery spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Set configuration to connect to Amazon S3
spark._jsc.hadoopConfiguration() \
.set(constants.AWS_S3ENDPOINT, constants.S3_BQ_ENDPOINT_VALUE)
spark._jsc.hadoopConfiguration() \
.set(constants.AWS_S3ACCESSKEY, access_key)
spark._jsc.hadoopConfiguration() \
.set(constants.AWS_S3SECRETKEY, secret_key)
# Read
input_data: DataFrame
if input_file_format == constants.FORMAT_PRQT:
input_data = spark.read \
.parquet(input_file_location)
elif input_file_format == constants.FORMAT_AVRO:
input_data = spark.read \
.format(constants.FORMAT_AVRO_EXTD) \
.load(input_file_location)
elif input_file_format == constants.FORMAT_CSV:
input_data = spark.read \
.format(constants.FORMAT_CSV) \
.option(constants.CSV_HEADER, True) \
.option(constants.CSV_INFER_SCHEMA, True) \
.load(input_file_location)
elif input_file_format == constants.FORMAT_JSON:
input_data = spark.read \
.json(input_file_location)
# Write
input_data.write \
.format(constants.FORMAT_BIGQUERY) \
.option(constants.TABLE, bq_dataset + "." + bq_table) \
.option(constants.TEMP_GCS_BUCKET, bq_temp_bucket) \
.mode(output_mode) \
.save()