pdf-embedded-text/main.py (130 lines of code) (raw):
from typing import Optional, Sequence
from google.api_core.client_options import ClientOptions
from google.cloud import documentai
def process_document_ocr_sample(
project_id: str,
location: str,
processor_id: str,
processor_version: str,
file_path: str,
mime_type: str,
) -> None:
# Optional: Additional configurations for Document OCR Processor.
# For more information: https://cloud.google.com/document-ai/docs/document-ocr
process_options = documentai.ProcessOptions(
ocr_config=documentai.OcrConfig(
enable_native_pdf_parsing=True,
enable_image_quality_scores=True,
)
)
# Online processing request to Document AI
document = process_document(
project_id,
location,
processor_id,
processor_version,
file_path,
mime_type,
process_options=process_options,
)
text = document.text
print(f"Full document text: {text}\n")
print(f"There are {len(document.pages)} page(s) in this document.\n")
for page in document.pages:
print(f"Page {page.page_number}:")
print_page_dimensions(page.dimension)
print_detected_langauges(page.detected_languages)
print_blocks(page.blocks, text)
print_paragraphs(page.paragraphs, text)
print_lines(page.lines, text)
print_tokens(page.tokens, text)
if page.image_quality_scores:
print_image_quality_scores(page.image_quality_scores)
def print_page_dimensions(dimension: documentai.Document.Page.Dimension) -> None:
print(f" Width: {str(dimension.width)}")
print(f" Height: {str(dimension.height)}")
def print_detected_langauges(
detected_languages: Sequence[documentai.Document.Page.DetectedLanguage],
) -> None:
print(" Detected languages:")
for lang in detected_languages:
print(f" {lang.language_code} ({lang.confidence:.1%} confidence)")
def print_blocks(blocks: Sequence[documentai.Document.Page.Block], text: str) -> None:
print(f" {len(blocks)} blocks detected:")
first_block_text = layout_to_text(blocks[0].layout, text)
print(f" First text block: {repr(first_block_text)}")
last_block_text = layout_to_text(blocks[-1].layout, text)
print(f" Last text block: {repr(last_block_text)}")
def print_paragraphs(
paragraphs: Sequence[documentai.Document.Page.Paragraph], text: str
) -> None:
print(f" {len(paragraphs)} paragraphs detected:")
first_paragraph_text = layout_to_text(paragraphs[0].layout, text)
print(f" First paragraph text: {repr(first_paragraph_text)}")
last_paragraph_text = layout_to_text(paragraphs[-1].layout, text)
print(f" Last paragraph text: {repr(last_paragraph_text)}")
def print_lines(lines: Sequence[documentai.Document.Page.Line], text: str) -> None:
print(f" {len(lines)} lines detected:")
first_line_text = layout_to_text(lines[0].layout, text)
print(f" First line text: {repr(first_line_text)}")
last_line_text = layout_to_text(lines[-1].layout, text)
print(f" Last line text: {repr(last_line_text)}")
def print_tokens(tokens: Sequence[documentai.Document.Page.Token], text: str) -> None:
print(f" {len(tokens)} tokens detected:")
first_token_text = layout_to_text(tokens[0].layout, text)
first_token_break_type = tokens[0].detected_break.type_.name
print(f" First token text: {repr(first_token_text)}")
print(f" First token break type: {repr(first_token_break_type)}")
last_token_text = layout_to_text(tokens[-1].layout, text)
last_token_break_type = tokens[-1].detected_break.type_.name
print(f" Last token text: {repr(last_token_text)}")
print(f" Last token break type: {repr(last_token_break_type)}")
def print_image_quality_scores(
image_quality_scores: documentai.Document.Page.ImageQualityScores,
) -> None:
print(f" Quality score: {image_quality_scores.quality_score:.1%}")
print(" Detected defects:")
for detected_defect in image_quality_scores.detected_defects:
print(f" {detected_defect.type_}: {detected_defect.confidence:.1%}")
def process_document(
project_id: str,
location: str,
processor_id: str,
processor_version: str,
file_path: str,
mime_type: str,
process_options: Optional[documentai.ProcessOptions] = None,
) -> documentai.Document:
# You must set the `api_endpoint` if you use a location other than "us".
client = documentai.DocumentProcessorServiceClient(
client_options=ClientOptions(
api_endpoint=f"{location}-documentai.googleapis.com"
)
)
# The full resource name of the processor version, e.g.:
# `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
# You must create a processor before running this sample.
name = client.processor_version_path(
project_id, location, processor_id, processor_version
)
# Read the file into memory
with open(file_path, "rb") as image:
image_content = image.read()
# Configure the process request
request = documentai.ProcessRequest(
name=name,
raw_document=documentai.RawDocument(content=image_content, mime_type=mime_type),
# Only supported for Document OCR processor
process_options=process_options,
)
result = client.process_document(request=request)
# For a full list of `Document` object attributes, reference this page:
# https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
return result.document
def layout_to_text(layout: documentai.Document.Page.Layout, text: str) -> str:
"""
Document AI identifies text in different parts of the document by their
offsets in the entirety of the document"s text. This function converts
offsets to a string.
"""
# If a text segment spans several lines, it will
# be stored in different text segments.
return "".join(
text[int(segment.start_index) : int(segment.end_index)]
for segment in layout.text_anchor.text_segments
)
# TODO(developer): Edit these variables before running the sample.
project_id = "YOUR_PROJECT_ID"
location = "YOUR_PROCESSOR_LOCATION" # Format is 'us' or 'eu'
processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
processor_version = "pretrained-ocr-v2.0-2023-06-02"
file_path = "DeclarationOfIndependence-Cursive.pdf"
mime_type = "application/pdf" # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types
process_document_ocr_sample(
project_id=project_id,
location=location,
processor_id=processor_id,
processor_version=processor_version,
file_path=file_path,
mime_type=mime_type,
)