vertex_ai/deploy_model/modeldeployment.yaml (26 lines of code) (raw):

######################## # It is the CI/CD for model deployment # Load and test the the trained model interface. # Create and endpoint in Vertex AI if it doesn't exists. # Deploy the model to the endpoint. # Test the endpoint. ######################## steps: # Create an endpoint. - name: python id: 'Build Container for model deployment' entrypoint: pip args: ["install", "pytz", "google-cloud-aiplatform==1.21.0", "--upgrade", "--user", "protobuf==3.20.3"] - name: python entrypoint: 'python' args: ['deploy_model/deploy_model.py', '--mode', 'create-endpoint', '--project', '$PROJECT_ID', '--region', '$_REGION', '--endpoint-display-name', '$_ENDPOINT_DISPLAY_NAME'] dir: '${_WORKSPACE_DIR}' id: 'Create Endpoint' # Deploy the model. - name: 'python' entrypoint: 'python' args: ['deploy_model/deploy_model.py', '--mode', 'deploy-model', '--project', '$PROJECT_ID', '--region', '$_REGION', '--endpoint-display-name', '$_ENDPOINT_DISPLAY_NAME', '--model-display-name', '$_MODEL_DISPLAY_NAME' ] dir: '${_WORKSPACE_DIR}' id: 'Deploy Model' waitFor: ['Create Endpoint']